代做BUSI 4624 – Programming for FinTech Coursework 2: Financial analysis with Python帮做Python编程

BUSI 4624 – Programming for FinTech

Coursework 2: Financial analysis with Python

Answer all questions below in .ipynb file.

In each question, 50 percent of the mark will be allocated to coding, and 50 percent of the mark will be allocated to the discussion (if asked in the question) and the script. explanation (for all questions, you are required to provide detailed explanation for each line of code in your script. to clearly illustrate the coding logics in solving the problems; the explanation should be specific and relevant to the question).

Submission deadline: 3pm 11th December 2024 via Turnitin.

Question 1 (5 marks)

Set the random seed to be your student number (e.g., 20123456) and use random.sample function to choose a random set of 5 different companies among the following list:

Apple Inc, Amazon.com Inc, Microsoft Corp, NVIDIA Corp, Ford Motor Co, Intel Corp, JPMorgan Chase & Co, General Electric Co, Walmart Inc, eBay Inc, Johnson & Johnson, Cisco Systems Inc, Exxon Mobil Corp, Bank of America Corp, Oracle Corp, Pfizer Inc, Tesla Inc, Broadcom Inc, Meta. Platforms Inc, Costco Wholesale Corp, Netflix Inc, PepsiCo Inc, Adobe Inc, QUALCOMM Inc, Texas Instruments Inc, Starbucks Corp, PayPal Holdings Inc, Electronic Arts Inc, Booking Holdings Inc, Comcast Corp, Honeywell International Inc, Amgen Inc, Intuit Inc, Synopsys Inc, CSX Corp, Advanced Micro Devices Inc, T-Mobile US Inc, Intuitive Surgical Inc, Applied Materials Inc, Vertex Pharmaceuticals Inc, Visa Inc, Procter & Gamble Company, Mastercard Incorporated, Home Depot Inc, Coca-Cola Company, Mcdonald's Corporation, Abbott Laboratories, Verizon Communications, Wells Fargo & Co, The Walt Disney Company.

Question 2 (15 marks)

Download the daily trading data from 01/01/2023 to 31/12/2023 for the selected stocks from https://twelvedata.com/ into separate pandas dataframes (one dataframe. per stock) with the following column names: date, open, high, low, close, volume. Use the stock ticker symbols (e.g., AAPL for Apple Inc.) as the names of the dataframes. The data should have observations of earlier dates at the top and later dates at the bottom.

When searching for the tickers of the companies in https://twelvedata.com/, note that all of these are common stocks of companies in United States.

Question 3 (70 marks)

Using the close price of the last stock among your selected stocks above, perform. the following tasks in python:

a. Calculate the daily returns of the stock in the last year. (5 marks)

b. Estimate a suitable model for the return process of the daily returns calculated in the previous question. The model should be able to capture common features of stock returns documented in the literature, including autocorrelation, volatility clustering. The parameter setting of the model should be chosen by comparing the Akaike Information Criterion (AIC) of various settings. Your script. should obtain the AICs of various settings and select the best one for the model, and report the estimation result of only the best model. Does the estimated return process exhibit common features of stock return in the literature?

(20 marks)

c. Using the estimated return process of the above question, calculate the expected daily volatility in the first trading day in January 2024 using the estimated volatility and error term of the last trading day of 2023. (5 marks)

d. Using https://www.marketdata.app/ , obtain information on December 29, 2023, about the put option with the strike price closest to the last closing price of the stock in your data, and with the expiration date of June 21, 2024. Please note that for stocks that have undergone stock-splitting during the January 2024 – June 2024 period, stock prices on twelvedata.com have been adjusted for the stock split, while those from marketdata.app have not. Using this strike price, and the estimated volatility above, calculate the Black-Scholes-Merton fair price of a 6-month put option. The current risk-free rate is 5.75% per annual. You can use the following formula to calculate the annualised volatility of a stock based on its daily volatility: Compare your estimated fair price with the trading prices of the option obtained above. (30 marks)

e. Develop a trading strategy that buys 1 share of the stock at the opening price of the next trading day when the daily return of a day is less than or equal to the 10th percentile of the distribution of daily returns over the previous trading 100 days (excluding the signal day). The strategy will exit the position when the daily return of a day is greater than or equal to the 90th percentile of the distribution of daily returns over the previous trading 100 days (excluding the signal day). The maximum long position is 1 share. You should only use the data you have downloaded and processed (i.e., please do not re-download and process data again). You do not need to back-test or examine the performance of the strategy. (10 marks)

Question 4 (10 marks)

For the 4 other stocks selected in Question 1, using their close prices over time to obtain their expected daily return and covariance matrix (using sample average and covariance) and plot the efficient frontier of a portfolio invested in these stocks using optimisation approach. You can borrow up to 50% of portfolio value to invest in a stock, and can short-sell a stock with up to 50% value of your portfolio.

(Note: Data for the stocks may have inconsistent observations, for example, there might be a stock that does not have observations in some trading days. You need to explicitly account for this when preparing the stock data.)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图