代写Econ 136 Final Spring 2024帮做R程序

Econ 136 Final

Spring 2024

1. True or false. (25 points, 5 points each)

Are the following statements true or false? Explain your answer in no more than two sentences. You will be graded on your explanation.

(i)  Historically, low dividend-price ratios of the S&P 500 have predicted high  (positive) subsequent price growth and essentially no subsequent change in dividends.

(ii)  The  following fact violates the semi-strong form of the efficient markets hypothesis: prices of companies tend to increase a few days before public announcement of good news.

(iii) When the risk-free rate increases, the optimal portfolio share of risky assets for a mean- variance investor declines.

(iv) In a CAPM equilibrium, since investors are compensated for holding risk, two securities with the same standard deviation should have the same expected return.

(v)  Consider a European call and a European put for the same non-dividend-paying stock, same expiration T, and same strike X, where X = F and F is the forward price of the underlying for delivery date T. Under no arbitrage, the two options have the same price today.

2. Welfare efects of risk. (20 points, 5 points each)

Consider an economy where CAPM holds, the risk-free rate is Rf   = 2%, and the return of the market portfolio has expectation E[Rm] = 10% and standard deviation 40%.

(a) Draw the capital allocation line.  What is the optimal portfolio of a mean-variance investor with risk aversion A = 2?  What is the mean and standard deviation of this portfolio? Show this portfolio in the figure. What is the value of this investor’s mean- variance utility function if he invests in this optimal portfolio (i.e., what is E[Rp] - (A/2)Var(Rp))?

(b) What is the optimal portfolio of an investor with risk aversion A = 4? What is its mean and standard deviation? Show this portfolio in the gure (from part (a)) as well. What is the value of this investor’s mean-variance utility function when investing optimally?

(c) Now suppose that due to a reduction in uncertainty, the standard deviation of the mar- ket return falls to 20%, while other parameters are unchanged.  Draw the new capital allocation line (in a new figure).  What are the new optimal portfolios of the two in- vestors? What are these portfolios’ means and standard deviations? Show them in the figure. Which investor’s portfolio share of risky assets changes by more after the change in the standard deviation of the market return? Why?

(d) What are the values of the two investors’ utility functions now, given their new optimal investments? Which investor’s utility increases by more after the change in the standard deviation of the market return? Why?

Comment on this statement:  “Reductions in risk are most beneficial to conservative investors who are highly sensitive to fluctuations in their wealth.”

3. Capital budgeting. (30 points, 5 points each)

Consider an economy where the risk-free rate is Rf  = 4%, the expected return on the market portfolio is E[Rm] = 12%, and the standard deviation of the return on the market portfolio is 20%.   The covariance between the return on ABC stock and the return on the market portfolio is 0.06.  All of this data refers to annual returns.  Suppose that ABC stock pays a dividend of $10 per share next year, and dividends are expected to grow at a rate of 2% per year.

Recall that under the Gordon Growth Model (GGM), we can write the price of a stock at any time t as

Pt = Rg/Dt+1

where R is the discount rate and g is the growth rate of dividends.

(a)  ABC’s manager argues that according to the Gordon Growth Model (GGM) his shares should sell for a price of $10/(.04 - .02) = $500.  Explain why this valuation is inappro- priate.

(b)  Assuming that CAPM holds, compute ABC’s beta with respect to the market portfolio, and the expected rate of return of ABC stock.

(c)  Given your answer to (b), what price does the GGM imply for a share of ABC stock?

(d) It turns out that the market price of ABC is $50, which is diferent from what you computed in (c) [if not, you made a mistake!]. However, you realize that ABC has only narrowly avoided bankruptcy last year, and has a very high book-to-market ratio.  Is the fact that ABC has a lower price than what’s predicted by part (c) consistent with what you know about the expected return of stocks with high book-to-market ratios? Why?

(e)  Now you want to apply a more sophisticated asset pricing model than CAPM to price ABC. Let HML = RH -RL denote the excess return of value stocks over growth stocks, and SMB = RS  - RB  the excess return of small stocks over big stocks.  Suppose that ABC has a beta of 1.5 with respect to HML, and a beta of zero with respect to SMB. The beta of ABC with respect to the market portfolio is still what you computed in part (b). If the expected excess return of value stocks over growth stocks is E[HML] = 4%, what should be the expected return of ABC according to the Fama-French model? Is it higher or lower than the expected return you computed in (b)? Why?

(f)  Using the expected return you computed in part (e), what should the price of a share of ABC stock be according to the GGM? Does your answer justify the market price of $50?

4. Options. (25 points, 5 points each)

Consider an economy in three periods, t = 0, t = 1 and t = 2.  Suppose that a stock index behaves as follows: the initial index value at time t = 0 is 100, and each period the index either rises by 15 or falls by 5 with equal probability (so for example at t = 2, the highest possible index value is 100+15+15=130). The index does not pay dividends during these two periods. The riskfree rate of return each period is Rf  = 0%.

Now consider a European call option on the index, with expiration date t = 2, and strike price X = 100.

(a) Draw the event tree for this economy.  For each node in period t = 1 and t = 2, write St, the current price of the index.  For each node at t = 2, write the payof of the call option.

(b) Consider the node where the stock price has gone up to 115 in period 1.  Construct a portfolio at this node that replicates the payof of the option in both possible states at t = 2.  Specifically, assume that at this node, you purchase x  shares of the index and y shares of the riskfree asset. Solve for x and y from the assumption that this is a replicating portfolio. What is the price of this portfolio at t = 1 (in the event when the stock price is S1  = 115)? What is the price of the option, C1?

(c) Following a similar procedure as in (b), now solve for the price of the option at t = 1 in the event when the stock price is S1  = 95.

(d) Now go back to period t = 0. To compute C0, construct a portfolio of the index and the riskfree asset that pays C1  in period t = 1 (that is, the number you obtained in (b) if the price goes up in period 1, and the number you obtained in (c) otherwise). What is the price of this portfolio? What is the price of the call option?

(e) Suppose that a European put option on the index with expiration t = 2 and strike price X = 100 is traded at a price of P0  = 5.425.  Is there an arbitrage opportunity in this economy?  If yes, construct a portfolio of the put, the call, the index and the riskfree asset to exploit it. If not, why?

5. Spot-forward parity. (15 points, 5 points each) Use the following notation:

Symbol

Description

T

t

S

ST

K

f

F

r

time when forward contract matures (years)

current time (years), where t [0, T]

price of stock underlying forward contract at time t

price of stock underlying forward contract at time T

delivery price of the forward contract

value of a long forward contract at time t

forward price at time t

risk-free rate of interest per annum (cts comp)

(a)  For a non-dividend paying stock, construct two portfolios at time t, that have the same payof at time T, and use the law of one price to establish the following relationship:

f = S K · e-r(T-t)

(b)  Noting that when a forward contract is initiated, the forward price equals the delivery price, which is chosen so that the value of the contract is zero, show that:

F = S · er(T-t)

(c) At maturity, a forward contract pays of ST — K.  By risk-neutral valuation we can write f = e-r(T-t)ERN[ST K]

where ERN[·] indicates we are taking the expectation using the risk-neutral probabilities.

Recall that in a“risk-neutral world”(i.e., when the objective probabilities and the risk- neutral probabilities coincide) the expected return of all risky assets is r. Use this fact to carefully derive the relationship from part (a).


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图