代做6SSMN961: APPLIED ECONOMETRICS MIDTERM COURSEWORK 2024/25代写C/C++语言
 

6SSMN961: APPLIED ECONOMETRICS

MIDTERM COURSEWORK 2024/25

INSTRUCTIONS TO CANDIDATES:

1.   The deadline for submission of the coursework is Thursday 7th  November at  10:00 am GMT. Work should be submitted on KEATS.

2.   The file that you upload on KEATS should contain two parts:

•   Short written answers to the questions

•   The STATA output in pdf format

You can merge two pdf files using Acrobat Professional or an online pdf merger.

3.   The word limit is 1,000 words, excluding STATA output and the cover sheet.

4.   Your submission should be your own words and not be generated by AI software.

5.   You must complete the coursework coversheet. This is very important to ensure that your work can be identified. In addition, you should name the file with your candidate number as follows: Candidatenumber.pdf.

6.   To avoid collusion, each student is given a unique version of the datasets. This means that you should answer the questions with the datasets that have been provided to you. If your answers or the STATA output file are based on the datasets given to another student, you will lose marks and face an allegation of collusion. Because the datasets are different, you should not expect to replicate the results in the papers exactly.

This question is based on a paper by Lee, Miguel and Wolfram (2020) which presents results from an experiment that randomised the expansion of the electricity grid in rural Kenya. In April 2014, the authors randomly divided communities into treatment and control groups. 380 unconnected households in 25 communities were in the treatment group and received an opportunity to connect to the electricity grid with a 100% subsidy, which meant they could connect for free. The control group consists of 1,150 unconnected households in 75 communities who received no subsidy. Between May and August 2014, each  treatment household received a letter describing a limited-time opportunity to connect to the electricity grid at a subsidised price.

The dataset electricity.dta contains information on household and community characteristics at baseline (between February and August 2014), a treatment indicator equal to 1 if the household was randomly assigned to be in the treatment group and 0 if the household was in the control group (variable treatment) and an indicator equal to 100 if the household was connected to the grid after 2014 and 0 if not (variable connected).

a)  Complete  the table below comparing the  means of a set of observable household characteristics of the control and the treatment groups and the p-value of the ttest of the difference  between the  means of the two groups.  Do  the two groups appear balanced? Explain why it is important to check for balance. (16 marks)

Differences between electricity grid control vs. treated households at baseline

 

Control

Treatment

p-value of difference

Number of members

 

 

 

High-quality walls (%)

 

 

 

Age (years)

 

 

 

Attended secondary schooling (%)

 

 

 

Senior citizen (%)

 

 

 

Chickens

 

 

 

Not a farmer (%)

 

 

 

Has bank account (%)

 

 

 

Employed (%)

 

 

 

b)  Explain how you can use the information provided to test whether the subsidy increases the probability of connecting to the electricity grid. Write down the estimated equation and explain in detail. (12 marks)

c)  Estimate the model in part b) with and without controlling for household  and community characteristics. Cluster the standard errors by community (variable siteno). Interpret the results. Explain why you would want to use clustered standard errors. (14 marks)

d)  Does the inclusion of controls in part c) have a substantial impact on the results? Explain in detail. (12 marks)

e) You would like to test whether the effect of the subsidy on the probability of being connected to the grid is  larger when  the  household  head  is  more  educated. The hypothesis is that more educated individuals understand better the benefits of having electricity.

i.     Explain  how you can adapt the model in part b) to test this hypothesis.  (16 marks)

ii.     Estimate this modified model, including controls for household and community characteristics. Explain the results in detail. (12 marks)

You would like to test the effect of being connected to electricity on some energy outcomes and some noneconomic outcomes. The dataset outcomes.dta contains data on these outcomes and the treatment indicator.

To test the effect on these outcomes, you use the model in part b), but instead of having the take-up indicator as the dependent variable, you look at energy outcomes and non-economic outcomes.

f)  Estimate the model separately for five energy outcomes: number of appliance types owned, owns mobile phone, owns radio, owns television, and owns iron. Interpret the results. (11 marks)

g)  Estimate the model separately for two noneconomic outcomes: life satisfaction and the political and social awareness index (which captures whether the household head was able to correctly identify the presidents of Tanzania, Uganda, and the United States). Interpret the results. (7 marks)

References:

Lee, Kenneth, Edward Miguel and Catherine Wolfram (2020). “ Experimental Evidence on the Economics of Rural Electrification”, Journal of Political Economy, Vol. 128, No. 4.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图