代做MATH 127: Sample Final Exam B代做Python程序

MATH 127: Sample Final Exam B

1.  Consider the following proposition.

n N, p N, ((p > n) k N, (k | p (k = 1 k = p))).

(a)  Determine whether this statement is true or false.  Justify your answer with a sentence or two.  (A full proof is  not necessary.)                 [4 pts]

(b)  Regardless of the truth value, write the logical negation of this statement in maximally negated form.             [5 pts]

2.  Define a sequence ⟨an  |  n ∈ N⟩ recursively as follows:

Prove that for all n ∈ N, an  and an+1  are coprime.                                                                       [10 pts]

3. Let n ∈ Z with n ≥ 2. Prove that

using a “counting in two ways” argument.                                                                                     [12 pts]

Use the exact form of the equation as given; do not simplify it algebraically.

• If your argument involves constructing partitions, justify that your construction defines a valid partition.

4.  For the following problems, provide  an appropriate counting argument to justify your answer.

You may leave  answers  as products, sums  of integers, factorials,  or binomial coefficients.

Let S be the set of strings (arrangements with repetition) of length 8 formed from the 26 letters of the English alphabet, and let T ≤ S be the subset consisting of strings with all distinct letters.

(a)  Determine the cardinalities of S and T.                                                                                 [3 pts]

(b)  How many elements of S contain the letters A, B, and C?                                                       [6 pts]

(c)  How many elements of T contain the letters G and J such that G appears somewhere to the left of J in the string?       [6 pts]

5.   (a)  Let m ∈ Z+ and Fm = {f : N → N | ∀n ≥ m,f(n) = 0}.  Define a bijection between Fm and Nm  and prove that it is a bijection.       [10 pts]

(b)  Prove that

F = {f : N → N | f(n) ≠ 0 for only finitely many values of n}

is countably infinite.                                                                                                               [6 pts]

6. Let A and B be non-empty sets, and let f : A → B be an arbitrary function.  Prove that f

is injective if and only if

X P(A),    Imf(X) Imf(X).

Note:  X denotes the complement of X in A, and Imf(X) denotes the complement of Imf(X) in B.                         [12 pts]

7. A relation R on a non-empty set S is called Euclidean if and only if R satisfies the following property: ∀a, b, c ∈ S, (((a, b) ∈ R ∧ (a, c) ∈ R) → (b, c) ∈ R).

Prove that a relation R is an equivalence relation on S if and only if R is both Euclidean and reflexive.         [10 pts]

8. For any x ∈ R, define the function frac(x) = x - lx」.  Let α ∈ R and n ∈ Z+  be arbitrary and fixed. Prove that there exist i,j ∈ {0} U [n], with i ≠ j, such that                                      [8 pts]

|frac(iα) - frac(jα)| < n/1 .

9.  Determine, with proof, the set of all integers that leave a remainder of 4 when divided by 5 and a remainder of 6 when divided by 13.          [8 pts]



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图