代做PHAS0007 Experimental Physics Training代写Python编程

PHAS0007 Experimental Physics Training

Experiment Q2-A : Determination of the  charge to mass ratio of an electron

Experiment Objectives:

To become familiar with three experiments from Q1 to Q6 that make measurements of the Planck constant, the charge to mass ratio of the electron and the Rydberg constant, which plays an essential role in the theory of spectral lines. In carrying out the experiment, you will develop skills in taking and analysing data, recording experimental procedures, estimating uncertainty and drawing conclusions.

Note, that there are two similar experimental kits (A and B) for each of the three experiments.

1.   Atomic spectra (Q1-A and Q1-B)

2.   Determination of the charge to mass ratio of an electron (Q2-A and Q2-B)

3.   Measurement of Planck’s constant (Q3-A and Q3-B)

Relevant Lecture Courses:

Atoms, Stars and the Universe PHAS0004

Waves, Optics and Acoustics PHAS0005

Introduction

During your PHAS0007 laboratory course, you will carry out three experiments. Each demonstrates a separate and fundamental concept in our current understanding of physics. Depending on which experiment you conduct, values for the Planck constant  (h), the charge to mass ratio of the electron (e/m) or the Rydberg constant (R ) will be determined and compared with accepted values.

As this is your first undergraduate physics laboratory, we will focus on developing your experimental scientific method. A full record of your experimental procedure, results and data analysis should be kept within your laboratory notebook. You will be given guidance on how to conduct and record your experimental work by the Demonstrators who will use a guide (which you will have a copy of) to help you to do this. You should   record your data in an appropriate table in your notebook. The data should also be plotted on a computer-generated graph using Python (or similar). Remember to include error bars and label the axes correctly. Finally, you should conduct a least squares fit of  the appropriate mathematical model to your data, stating the x2 value of your fit and discussing its significance. You will learn how to do this in your statistics course.

Your record-keeping will be assessed through a Digital Retrieval Test which explores the information you have stored in your lab book. You will also submit a formal report of one experiment.

Q2. Determination of the charge to mass ratio of the electron

Q2.1 Introduction

In the early 1900’s J.J.Thomson investigated how moving electrons behave in both electric and magnetic fields. From these studies he developed a balanced-field experiment where a beam of electrons is subjected to magnetic and electric fields in such a way that the forces on the electrons from each field cancel and they suffer no overall deflection. This enabled him to determine the charge to mass ratio, em, of the electron.

An electron having a charge e  moving in a uniform. electric field of intensity E is subjected to a force FE  in the direction of the field where

FE  = Ee .                                                                 (2.1)

Similarly an electron moving in a uniform magnetic field of flux density B with a velocity v at right angles to B, experiences a force FB which is perpendicular to both B and  v  of  magnitude

FB   = Bev .                                                                 (2.2)

The effect of applying electric and magnetic fields to a moving electron (as part of a

beam of electrons) is shown in figure 2.1.

Figure 2.1 The forces on moving electrons due to applied electric and magnetic fields

Provided the magnetic and electric field directions are at right angles the two forces can be anti-parallel. If the field strengths are adjusted the two forces can cancel and the electron will travel undeflected. For null deflection we require:

Ee = Bev                                                            (2.3)

In the experiment the electrons are accelerated to speed v as a result of a potential difference in an electron gun. The law of conservation of energy requires that the kinetic energy of the electron as it leaves the electron gun (determined by the voltage on the anode) must equal the change in its electrical potential energy. For an anode voltage of Va this gives the following,

2/mv2 = eVa                                                                                              (2.4)

Where m is the mass of the electron.

From equation 2.4:

m/e = 2Va/v2                                                                (2.5)

Substituting equation 2.3 into 2.5 gives:

m/e = 2Va/v2 = 2B2Va/E2                                                             (2.6)

Consequently with knowledge of the applied electric and magnetic field strengths and the accelerating voltage on the electron gun it is possible to determine the charge to mass ratio, m/e, of the electron.

Q2.2 Overview of Apparatus

The main components of the apparatus are illustrated in figure 2.1 and 2.2 and the connections to the power supplies are shown in figure 2.3.

The electron gun and deflecting plates are contained within an evacuated glass envelope. This whole unit is known as a Thompson tube.

Electric connections between the Thomson tube and the various power supplies are  achieved by connecting the supplies to the appropriately labelled inputs on the tube housing. The tube cathode is heated by a filament carrying a current driven by a 6V a.c. voltage. Electrons are emitted by the heated cathode and are accelerated through the potential difference Va towards the anode, passing through an aperture (slot) in it.

A further aperture allows a planar beam of electrons to continue into the region between the deflector plates and the magnetic field coils. Here the electron beam experiences deflections, in the directions identified in figure 2.1, due to the electric field derived from the potential difference Vp across the plates and the magnetic field generated by the current IH through the pair of coils which are in series.

An arrangement of parallel coils like this, called Helmholtz coils, has the advantage that, provided they are set a distance apart equal to their radius (in this case 6.9cm), the field can be considered to be uniform. between them. The deflector plates are also designed so that an acceptable level of field uniformity is achieved in the region of the beam path.

Note that the electron beam in the region between the coils and plates illuminates the surface of a curved luminescent screen, making its trajectory visible. The curvature of this screen enables electrons across the width of the planar beam to ‘impact’ it at different points along the whole beam’s length. As a result, the influence of the two fields can be seen across the length of the planar electron-beam path.

Figure 2.1 Schematic diagram of the e/m Thompson tube

The uniform magnetic field between the coils in this case is given by:-

B = kIH                                                                                                             (2.7)

Where k = 4.17 × 10-3 TA-1 . The current, IH,   (in mA) is given on the right hand display of the Thurlby power supply (ignore the flashing decimal points).

The plate supply voltage is supplied by the ‘in-house’ power supply and is monitored via a 1/100 potential divider via a DVM. The magnitude of the electric field E between the plates depends on the separation of the plates, d, and the potential  Vp  applied to the plates as:

E = d/Vp (2.8)

The separation of the plates, d, in the Thompson tube is 8.0mm.

Figure 2.2 Experimental apparatus used to conduct a determination of the charge to mass ratio of the elctron

Figure 2.3 Connection of the Thompson tube to power supplies and meters



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图