代写ECON705 Individual Report Housing Affordability Analysis代写留学生Matlab程序

ECON705 Individual Report

Housing Affordability Analysis

2024/25

Objectives

This assignment is designed to simulate real-world economic challenges, focusing on a critical issue: housing affordability. It mirrors tasks you might encounter in job interviews and assessments for roles requiring data analysis expertise. You will work with a dataset on house prices, earnings, and affordability ratios across England and Wales, using R for data importation, cleaning, transformation, and visualisation. In addition to showcasing your technical skills, your report should reflect a deep understanding of housing affordability and demonstrate your ability to think critically, just as a data analyst or economist would in the field.

Information

Submission Deadline: Wednesday, 13 November 2024, 12:00 GMT

Assessment Weight:  20%

Submission Format:  Online via CANVAS, consisting of 3 separate files:

1.  REPORT in Word format

2.  CODES in R Script.

3.  Cleaned and produced DATA file

Failure to submit any of the supplementary files (item 2 and 3) will result in a deduction of marks:  10 marks will be deducted for a missing R script, and another 10 marks for the absence of the final data file.

Submission Instruction: Submit your assignment through CANVAS. Note that you are allowed only TWO submission attempts. Ensure all required files are attached before clicking the submit button. For guidance on how to attach multiple files in a single submission, please refer to the instructions below.

Topic: Housing Affordability Analysis - An Examination of House Prices and Earnings in England and Wales

In this project, you will explore the evolution of house prices, earnings, and housing affordability in England and Wales. Some potential areas of focus include:

•  How have house prices and earnings evolved over time, and what can you infer about affordability trends?

•  Are there noticeable regional differences in house prices and earnings?  How do affordability ratios compare across regions or local authorities?

•  Have house prices and earnings been converging or diverging across regions?  How do these trends impact housing affordability?”

You are encouraged to formulate your own specific research questions, explore different visualisation techniques, and consider multiple perspectives in your analysis.

Data

You are provided with data spanning from 1997 to 2022. This data contains two key variables: median house price and median annual earnings. The dataset spatially covers 9 regions in England, plus Wales, amounting to 10 subnational geographies. Additionally, data for 331 local authority districts in England and Wales is included.

Note that the affordability ratio can be computed by dividing the median house price by median earnings. Source: Office for National Statistics (https://www.ons.gov.uk/)

Report Guidelines

Your report should offer an in-depth analysis tailored to the data and questions you have chosen to investigate. Compile your analysis, findings, and visualisations into a detailed report with a maximum length of 1,000 words. Note that this word count does not include abstract (or non-technical summary), graphs, tables, code snippets, data, and references. For the R codes, it’s advisable to submit it separately in an R Script. file. Essential tables and graphs must be incorporated into your report as they serve as critical tools for  communicating your analysis to your audience. Directing readers to separate code or R Script. files for tables or graphs is not acceptable!

Grading Rubric

Grading will be based on the relevance of your analysis to this case study, the clarity and efficiency of your R code, and the coherence of your written explanations.

Criteria

Ratings

Points

Structure, Style, and Presentation

20 pts

Depth of Understanding and Critical Analysis

30 pts

Effective Coding to Deliver Meaningful Analysis

30 pts

Quality of Research and Use of Sources

20 pts





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图