代做CEIC6714 Mini Design Proposal代做Python程序

CEIC6714 Mini Design Proposal

Brief:

· Your team has been engaged to develop a business case for the use of locally generated green hydrogen and/or derivatives within the mining value chain in Australia.

o The derivatives you can use include ammonia and methanol, such that the costing tools for hydrogen, ammonia, and methanol can be used.

· The mining value chain is defined as including ore extraction, mineral processing, and transportation of minerals to a port for international export.

· The primary objectives of this project are:

o To evaluate the technical feasibility, the financial viability, and the environmental impact of the production of green hydrogen and derivatives in Australia, and subsequently use of this hydrogen locally within the mining value chain.

o To reduce the CO2 footprint of your mining process by at least 50% if possible, or as high as you believe is reasonable and achievable.

· More detailed information is given below.

Expectations:

You are expected to complete a report and video presentation comprising the following key project information:

· Project location.

o The mine site location will be given to each group. Mines include:

§ Boddington gold mine (Au) – Groups 1-2

§ Olympic Dam metal mine (Cu) – Groups 3-4

§ Cannington silver mine (Ag) – Groups 5-6

§ Mount Whaleback mine (Fe) – Groups 7-8

§ Murrin Murrin Mine (Ni, Co) – Groups 9-10

o You should estimate what the Scope 1 and 2 emissions are from this specific mine site

o These numbers will be needed to validate that you can reduce the emissions across the whole value chain by 50%

o Find the renewable energy generation data for your site using renewables ninja – the instructions are in the manuals for all the tools.

· Hydrogen and/or derivative end use.

o The end use must be located at the mine site(s) chosen.

o You have the option to supply hydrogen and/or derivatives to as many end use application areas within your mine site as desired.

o You should include an analysis of the expected hydrogen/derivatives required per year for this end use.

· Process:

o Detail the process narrative (using a process flow diagram), including any auxiliary/waste streams. Note that a mass and energy balance is not required.

o Determine a power plant configuration that is reasonable for the project location and in consideration of local infrastructure

· Economic analysis:

o Use the hydrogen cost tool to estimate a levelised cost of hydrogen/derivatives production over a 25-year period.

o Calculate any other project aspects not incorporated into the levelised cost. For example, the cost to replace current equipment or retrofitting.

o Justify changes to the inputs to the model that are different to the default values, if any.

o Provide commentary on the economic feasibility of the process. Is the cost reasonable compared to the current approach? What changes within the next decade could improve the techno economic feasibility?

· Environmental assessment

o Provide a judgement of the emissions reduction due to implementing your processes.

o Provide an assessment of environmental impacts such as traffic movements, power requirements, air and noise emissions, waste management and community impacts.

Background Information and Resources:

These resources may also help in your project:

Open-Source Tools

Hydrogen Cost Tool: https://www.globh2e.org.au/hysupply-cost-tool

Ammonia Cost Tool: https://www.globh2e.org.au/hysupplyammoniatool

Methanol Cost Tool: https://www.globh2e.org.au/p2xmethanoltool

Feedstock Data

Renewable Energy Data:

- Solar Data: https://globalsolaratlas.info/

- Wind Data: https://globalwindatlas.info/

- Hourly Data: https://www.renewables.ninja/

(Data for Solar and Wind generation is preloaded in the open-source costing tools for selected locations)

Water Data:

- Fresh Water: https://realtimedata.waternsw.com.au/

- Wastewater Resources: https://researchdata.edu.au/wastewater-treatment-facilities/1278436

The following textbooks may also be useful for your project:

· Sinnott, R. K. Coulson and Richardson’s Chemical Engineering Volume 6, Chemical Engineering Design. (1999).

· Towler, G. & Sinnott, R. Chemical engineering design: principles, practice and economics of plant and process design. (Elsevier, 2012).

· Peters, M. S., Timmerhaus, K. D. & West, R. E. Plant Design and Economics for Chemical Engineers. (2003).

Report Structure:

· Join a group of 3-4 members on Moodle

· Your group report should include:

o Cover page.

o Executive summary.

o Table of contents.

o Introduction.

o Site location and estimated emissions (with necessary justification)

o Use cases for hydrogen and derivatives (with necessary justification)

o Process descriptions and process flow diagrams.

o Key equipment sizing (capacity of renewable plants, electrolysers, batteries etc.) and plant layout.

o Economic assessment.

o Environmental assessment.

o Conclusion.

o Reference list.

o Appendices. Note that your inputs to the tool (with justification) and key outputs should be in the appendix.

· The total length of the report (including the reference list and appendix) should not exceed 30 pages.

Informational Video Structure:

· Video should be approximately 2-3 minutes long.

· Explain your key findings tailored towards the general public.

· Avoid technical terms or jargon.

· Avoid discussion of irrelevant sections of the report (such as MEB, plant design), and focus on key outcomes (Economics and product / market / environmental aspects)

Report Marking Criteria

1. Executive Summary / Introduction / Conclusions (10%)

Percent

Descriptor

Comment

0-49

Deficient

Deficient in several of the aspects below

50-74

Acceptable to Thorough

Deficient in one or two of the aspects below

75-100

Comprehensive to Superior

Executive summary is concise and contains key detailed information. Introduction sets the context and incorporates a detailed overview of the purpose of the project, in light of both environmental and policy / regulatory / social license issues. Conclusion comments on the economic feasibility of the process, areas that the process could improve to make it more economically viable, and proposes a pathway / timeline for implementation of these changes, in order to comment on the feasibility of the business case

2. Option Selection, Process Narrative, PFD, Plant Layout (30%)

Percent

Descriptor

Comment

0-49

Deficient

Deficient in several of the aspects below. Process narrative difficult to follow. No references. Difficult to assess how calculations were performed

50-64

Acceptable

Deficient in two of the aspects below

65-74

Thorough

Deficient in one of the aspects below

75-84

Comprehensive

Contains all elements as described below. Process narrative clear and linked to PFD and includes quality references (example, engineering textbooks, journals, etc.). All ancillary processes that may be required to interface with the plant are discussed (that is, all steam, water, waste, and air lines).

Good summary of assumptions and calculations used and clear links to detail in appendices. Appropriate sizing of key process equipment that allows a plant layout diagram to be constructed. Plant layout is appropriate and overlaid over an existing map of the area.

85-100

Superior

As above. Process narrative clear identifying how the plant will be designed/operated, linked to PFD and includes references. All major units are annotated with a unique code which can be followed. Standard is well beyond expectation, professional level of detail. Proper and consistent referencing system.

3. Economic Assessment (30%)

Percent

Descriptor

Comment

0-49

Deficient

No model inputs changed from the default values.

Poor explanation of the levelised cost. No sensitivity analysis.

50-64

Acceptable

Some model inputs are changed from the default values but no justification.

No sensitivity analysis.

65-74

Thorough

Some model inputs are changed from the default values with justification.

Good explanation of the levelised cost.

Some sensitivity analysis.

Key model inputs and outputs shown in appendix.

Sensitivity analysis identifies with justification but lack insights on how they can be achieved.

75-84

Comprehensive

Contains all elements as described above. Sensitivity analysis includes multiple factors and effect on levelised cost.

85-100

Superior

Contains all elements as described above. Cost/revenue assumptions and estimates are benchmarked against comparable plants or businesses. Sensitivity analysis accurately identify key drivers and can provide a clear case for cost reduction, how these reductions can be achieved.

4. Environmental Assessment / Policy / Regulations / Social License (20%)

Percent

Descriptor

Comment

0-49

Deficient

No EIA. References are not present, or too few and of low quality. Severe deficiency across multiple key aspects as mentioned below.

50-64

Acceptable

Environmental assessment is present with limited scope and depth and is of qualitative nature only.

Some discussion on policy and regulation.

References are present but few or of low quality.

65-74

Thorough

Adequate environmental assessment covering most relevant aspects.

Contains discussion of some social license aspects relevant to the project.

References are relevant and from credible sources.

75-84

Comprehensive

Detailed environmental assessment with consideration of all key environmental factors.

Environmental assessment includes quantitative comparison against benchmarks.

Good understanding of relevant policy and regulation and how this could impact the current and future viability of the project.

Includes discussion of several key social license aspects.

85-100

Superior

All elements are completed to a superior standard free of errors and omissions.

Environmental assessment covers all key considerations and incudes quantitative assessment against multiple criteria and benchmarks.

5. Report Presentation (10%)

Percent

Descriptor

Comment

0-49

Deficient

Deficient in several of the aspects below. Page limit is not respected

50-74

Acceptable to Thorough

Page limit respected. Formatting is deficient in two of the aspects below. Minor formatting issues. Evidence of data book and appendix but difficult to follow

75-100

Comprehensive to Superior

Proper and consistent referencing system (minimal grey literature/references). Consistent formatting (font type, size, headings etc.). Table of contents evident. All tables, drawings and figures are labelled. Appendix completed and well organised. Evidence of document control. Note all actions taken during the review process and correctly identify revision numbers to document, drawings, and tables. Good cross-referencing to relevant part of the Appendix.

Video Marking Criteria

Percent

Descriptor

Comment

0-49

Deficient

Deficient in several of the aspects below

50-74

Acceptable to Thorough

Deficient in one or two of the aspects below

75-100

Comprehensive to Superior

The video provides a non-technical overview of the project. Key outcomes and conclusions are detailed. The presentation style. is engaging with minimal errors. The time limit is respected.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图