代做PHY254 Problem set #3 Fall 2024帮做Python编程

PHY254

Problem set #3

Fall 2024

1 Are these forces conservative? [20%]

1.1. Consider the two-dimensional force

1.1.1. Evaluate the work done

along the three paths joining the origin O to the point P = (1, 1) as shown in figure 1(a) and defined as follows:

(a) This path goes along the x axis to Q = (1, 0) and then straight up to P. Hint: divide the integral into two pieces,

(b) On the path y = x2. Hint: you can replace the term dy in eqn. (1) by dy = 2x dx and convert the whole integral into an integral over x.

(c) This path is given parametrically as x = t3 , y = t2. Hint: rewrite x, y, dx and dy in eqn. (1) in terms of t and dt, and convert the integral into an integral over t.

1.1.2. Based on these calculations, is the force conservative? If yes, what is the potential en-ergy?

1.2. Do the same problem, but for the force

Figure 1: Paths for Q1.

2 Lennard-Jones potential [60%]

For record-keeping, we ask you to submit your code along with your report, with a 5% penalty if your code is absent. However, the marker will not look at it, unless they feel the need to. (For example, they suspect plagiarism.) All your answers and figures should be in your report.

The Lennard-Jones potential models the radial potential energy of vibrating diatomic molecules. The “LJ” or “6-12” potential function is

where ² > 0 is a constant with units of energy and rm is a length. The potential has a minimum at r = rm , where r > 0 represents the radial separation between two atoms. The minimum has a depth of −² . V (r ) goes to zero as r → ∞ and diverges as r → 0. This PhET simulation uses the Lennard-Jones potential.

2.1. Calculate the radial force F(r ) associated with this potential energy. Where is it attractive and where is it repulsive? Where is the stable equilibrium point and why is it stable?

2.2. Let us measure energy in units of ² and distances in units of rm. That is, let’s introduce V 0 = V /² and r 0 = r /rm, and let’s drop the primes to obtain

Write a Python script. to plot the potential in the range 0.8 ≤ r ≤ 3.0, and its associated force (in these units). For V (r ), you should get a plot that looks roughly like the one on the Wikipedia page.

2.3. Modify the script. lennard-jones_TEMPLATE.py to calculate the motion under the force you found above. Set up the script. to calculate the velocity v(t) and position r (t), using an Euler-Cromer time stepping scheme. Similarly to what we did above, assume the mass of the atom is m = 1 in some atomic units.

Now run the script. with initial conditions r0 = 1.02, v0 = 0. Make a plot showing the posi-tion and velocity for about 10 periods of this motion. You should observe that the motion is oscillatory. Does it look approximately sinusoidal? Estimate the period by looking at graph-ical output or by computationally finding twice the average time between crossings of r = 1. What period do you get?

Note: by measuring energy in units of ² , mass in atomic mass units and radii in units of rm, we have effectively chosen “atomic time units” where each unit of time is given by Your answer will naturally emerge in these units.

2.4. In these atomic units, let x = r −1. Now the minimum is located at x = 0. Expand V (x) about V (0) up to second order in x. Use this calculation to find the period T of small oscillations and compare your analytic answer to the numerical result found in the previous part.

2.5. Now decrease the initial displacement r0 toward smaller r , for example try r0 = 0.95, 0.90 and 0.85. Describe what happens as r0 decreases; include selected plots. Go back to your plot of the potential in part 2.2., and indicate the locations of all the various initial conditions you tried. Can you explain this behaviour and relate it to molecular physics?

We will now create a composite of trajectories in (x, v) phase space, known as a phase space portrait. The idea is to plot the trajectories for a range of values of x0 and v0. You can hand in multiple plots, but try to include several trajectories on each plot. The trick to do this with Matplotlib is to nest the numerical integration loop inside a larger loop. Here is one approach to doing this (you may have to interpret and adapt it):

ntrajectories = 20 # number of trajectories to plot

delta = 0.01 # increment between initial positions

trajectory_number = 0 # initialize trajectory counter

# an outer loop to calculate ntrajectories trajectories

while trajectory_number < ntrajectories:

radi = np.empty(nt) # position: initialize to empty

vels = np.empty(nt) # velocity: initialize to empty

radi[0] = 0.85 + trajectory_number*delta # initial position

vels[0] = 0. # initial velocity

ii = 0 # initialize loop

# main loop

while ii < nt-1:

# Here you update velocity and position like in previous question

# Plot this trajectory in phase space

plt.plot(radi, vels)

trajectory_number += 1

# . . .

plt.show()

2.6. Identify the separatrix, which is the curve that separates bounded from unbounded motions.

2.7. For points starting from the zero force point r0 = 1, find the escape velocity for which the trajectories switch from being bounded to being unbounded.

3 Beads on angled rails [20%]

(Morin 4.33) Two horizontal frictionless rails make an angle θ with each other, as shown in Figure 2. Each rail has a bead of mass m on it, and the beads are connected by a spring with spring constant k and relaxed length zero. Assume that one of the rails is positioned a tiny distance above the other, so that the beads can pass freely through the crossing. Find the normal modes.

Figure 2: Morin’s Fig. 4.27.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图