代做CAN207 Continuous and Discrete Time Signals and Systems Assignment 1代做留学生SQL 程序

CAN207

Continuous and Discrete Time Signals and Systems

Assignment 1

Assignment 1 :     CT Signals and Systems

Deadline:                           Nov. 11th, 9:00 a.m.

Submission:                      Submit the electronic version to Learning Mall.

Information:                     This assignment takes 15% in the total mark.

Late submission:              5% each day, less than 1 day is counted as 1 day.

Submissions later than 5 working days won’t be accepted.

Question 1 ( L3-4) 20 marks

(a)           For the signal x(t) shown below, plot 2x(2t + 2)

(b)           Express the signal shown below using scaled and time shifted unit step function u(t).

(c)           For each of the following signals, determine whether they are even, odd or neither.

I)            x(t) = sin(3t − 2/π)

II)           x(t) = u(t) − 0.5

(d)           For the given signals, if the signal is periodic, find its fundamental period

and its fundamental frequency; otherwise, prove that the signal is not periodic.

I)          x(t) = 4cos(4t + 40°) + 3e−j12t

II)         x(t) = cos(2πt) + sin(6t)

(e)           Determine whether the following signals are power signal, energy signal or neither:

I)          x(t) = e−2tu(t)

II)         x(t) = ej(2t+π/4)

Question 2 ( L5-6) 20 marks

(a)           For  the  systems given  below, decide whether they are causal, stable, linear and time-invariant? Conclusions only.

I)           Input-output relationship: y[n] = x [3 − 2n];

II)          Input-output relationship: y(t) = cos(πt)x(t);

III)          Impulse response: ℎ(t) = u(t + 3) − u(t − 3);

IV)          Impulse response: ℎ[n] =  5nu [ − n].

(b)          Suppose the following systems take x(t)  as the  input and y(t)  as the

corresponding output. Find the impulse response ℎ(t).

I)           y(t) = x(t − 7);

II)           y(t) = x(t − 7)d;

(c)           Consider the LTI system shown as below:

Express  the  system   impulse  response  as  a  function  of  the   impulse responses of the subsystems.

(d)          Suppose the systems with impulse response ℎ(t) take x(t) as the input.

Find the output y(t).

x(t) = u(1 − t) and ℎ(t) = e−tu(t − 2);

(e)           For the convolution between two time-domain signals f(t) and g(t), the

diferentiation property is:

Question 3 ( L7-9) 20 marks

(a)           Find the Fourier coefficients of the exponential form.

x(t) = 2sin24t + cos4t and

(b)            Calculate the Fourier coefficients for each signal:

(c)           A signal x(t) has a Fourier transform. X(w). 4

Calculate the Fourier transform. of x(at)cos(w0 t), with 0 < a < 1.

(d)          The magnitude and phase spectrum of a LTI system are plotted below:

If input signal is x(t) =  1 + 2cos(2πt), find the corresponding output.

Question 4 ( L10-11) 20 marks

(a)           A stable system is characterized by the transfer function: 10

I)           Draw the zero-pole plot of the system;

II)          Determine the ROC of the system;

III)         Find the impulse response of the system;

IV)        Decide   whether   the   system’s   magnitude   response   is lowpass, highpass, bandpass or bandstop.

(b)          The characteristic equation of a continuous-time causal system is given:

D(S) = S2  + 2S + a

For the system to be stable, decide the range of the real value a in the equation.

(c)           Given the relationships:

Use Fourier transform. properties to show that g(t)  has the form. like: g(t) = AY(Bt), and determine the values of A and B.

Question 5 ( L12-13) 20 marks

(a)           The following differential equation is used to model a RLC circuit whose input is x(t) = etu(t):

y'' (t) + 5y' (t) + 6y(t) = x(t)

With the initial conditions:

y(0 ) = 1   and   y' (0 ) = 0

Solve the differential equation in time domain to get:

i) Zero-input response;

ii) Zero-state response;

iii) Overall response.

(b)          Solve sub-question c) in frequency domain.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图