代做DSCI 510: Principles of Programming for Data Science: Final Project Guidelines代做留学生Python程序

DSCI 510: Principles of Programming for Data Science: Final Project Guidelines

In the final project for this class, you will have the opportunity to apply the knowledge and programming skills you have learned to a real-world problem. Your project should focus on web scraping (or collection data through APIs), data cleaning, analysis, and visualization using Python.

You can work on the project on your own or can form a team of maximum 2 students.

Project Deadline: Dec 9, 2024 11:59 PM

You must upload all files to the Github repository before the deadline.

Git hub Repository Access

When you accept the project via the provided link, it will ask you to create a team or join a team. Create a team or join a team your teammate has already created. Do not create separate teams or join the wrong team, as this just creates more work for us.

In the README.md file (described below), you must mention who are the team members (including name, email, Github username and USC ID) for this project.

The final project acceptance link: https://classroom.github.com/a/q4BQ8R99

Project Proposal [Optional]

You may send a one page proposal describing the project. This proposal should include the following:

1.   Name of the project and team members

2.  What problem are you trying to solve?

3.   How will you collect data and from where?

4.  What analysis will you do and what visualizations will you create?

The deadline for this proposal is Nov 10, 2024 . We will provide feedback and suggest changes if required. This is an optional step, you can skip it entirely and submit the final project only.

We will share the assignment URL for final project submission, you can upload the proposal to the same repository.

Note: You must send me (amandeep@isi.edu) and Yixiang (yixiangy@usc.edu) an email with the subject "DSCI 510 Final Project Proposal" that you have uploaded the proposal to the github repository. The email should contain the URL to your github repository.

Project Goals and Steps

1. Data Collection (20%): You should identify websites or web resources from which you will get the raw data for your project. You can either web-scrape data or collect data using available APIs. This could include news articles, e-commerce websites, social media posts, weather data, or any other publicly available web content.

You should not be simply downloading a file from a website for example. This step should be fairly sophisticated and demonstrate the techniques you learnt in the class.

Using Python libraries like BeautifulSoup and requests, you should write scripts to scrape data from the chosen websites. This step includes handling HTML parsing, making HTTP requests, and extracting relevant information.

We recommend that you scrape data from static websites, or use APIs provided by the source. If you scrape data from dynamically generated pages, you might see unforeseen complications. Note: Some APIs are paid, and you might have limited access only, without paying for it.

2. Data Cleaning (20%): After data collection, you will need to clean the data and

preprocess it. This will involve handling missing values, cleaning HTML tags, removing  duplicates, and converting data into a structured format for analysis. If your raw data is not in English, you must translate the data to English in this step.

3. Data Analysis (20%): You will analyze the scraped data to gain insights or answer specific questions. You should perform. statistical analyses, generate descriptive statistics, using libraries such as NumPy and Pandas (or any other library you wish).

4. Data Visualization (20%): You should create plots, graphs, or charts using Matplotlib or any other library, to effectively communicate your findings.

5. Final Report (20%): You will submit a final report, describing what is the problem you are trying to solve? What data you collected, how you collected it. What data cleaning did you do? Explanation about analysis and Visualization.

The grading shown here is a general guideline, but it can be changed based on your project. If your data collection is simple but analysis is fairly complicated, we will adjust the rubric accordingly.

Final grading rubric: TBD

Project Deliverables

Git hub Repository

We will create an assignment for the final project. You will accept the assignment and commit your code to the repository. Here is the generic structure of the repository:

github_repo_structure/

├── README.md

├── requirements.txt

├── data/

│    ├── processed/

│    └── raw/

├── project_proposal.pdf

├── results/

│    └── final_report.pdf

└── src/

├── clean_data.py

├── get_data.py

├── run_analysis.py

├── utils/

└── visualize_results.py

Here is what each of the folders/files should contain / mean:

1. project_proposal.pdf: The optional project proposal file. You may wish to skip this step.

2. requirements.txt: This file lists all the external libraries you have used in your project. To install all the required libraries, you can run

pip install -r requirements.txt

3. README.md: Documentation on how to install the requirements for your project. How to run your code, explain how to get data, how to clean data, how to run analysis code and  finally how to produce the visualizations.

We have created sections in the README.md file for you to fill in. Make sure you fill all the sections.

4. data/ folder: This folder contains the data used in this project.

a.   The data/raw folder will have the raw files you downloaded from the web. It could contain (not exhaustive) html, csv, xml or json files.

b.   The data/processed folder will contain your structured files after data cleaning. You may clean the data and convert them to JSON files for example. Your analysis and visualization code will perform. operations on the files from this folder.

Note: Make sure your individual files are less than 100MB, otherwise you will need to use GFS.

5. results/ folder: This folder will contain the final report and any other files you might have as part of your project. You may choose to create a jupyter notebook for visualizations,    this notebook will be present in this folder.

6. src/ folder: This folder contains the source code for your project.

a. get_data.py will download the data and store the data in the data/raw folder.

b. clean_data.py will clean the data, transform. the data and store the files in the data/processed folder.

c. run_analysis.py will have code to analyze the data to answer the project specific questions.

d. visualize_results.py will create visualization using matplotlib or any other library to conclude the result of the analysis you performed.

e. utils/ folder may contain any utility code you write.

The directory structure provided is a basic template. Replace placeholder files, such as project_proposal.pdf, with your actual files, like your proposal PDF. You can create more files in this repository as you require.

Final Report

The final report will have these sections.

1.   What is the name of your project and who is in the team? Please describe it as a research question and provide a short description.

2.  What data did you collect? How did you collect it? How many data samples did you collect?

a.   Specify exact data sources and your approach.

b.   Describe what has been changed from your original plan, what challenges you encountered or resolved.

3.  What kind of analysis and visualizations did you do?

a.  What analysis techniques did you use, and what are your findings?

b.   Describe the figures you made. Explain its setup, meaning of each element.

c.   Describe your observations and conclusion.

d.   Describe the impact of your findings.

4.   Future Work

a.   Given more time, what direction would you take to improve your project?

The final project report should contain (2-5) pages, both inclusive. It may not be too short or too long. Please spend a decent amount of time on the report. Your report is the first file we read.    We won't know how great your project is if you can't explain it clearly.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图