代写STATS 380 Statistical Computing SEMESTER ONE 2024代做Python语言

STATS 380

SEMESTER ONE 2024

STATISTICS

Statistical Computing

group,X17,X18,X19,X20,X21,X22

15-17,3.8,4 . 1,3 . 5,1 .4  e,1 . 1  e,1 . 0  e

18-24,20 . 2,19 . 9,16 . 2,11 .8,11 . 0,8 . 0

15-24,15 .3,14 . 9,12 .7,8 . 6,8 . 2,5 .8

25-34,22 .7,19,20 . 2,14 . 6,11 .4,10 . 1

35-44,17.3,19 . 9,14 . 1,12 .8,10 . 1,9 .8

45-54,16,16 . 2,17,13 . 0,11 .8,9 . 9

55-64,15,12 . 6,12 .8,12 . 5,12 .8,10 .7

65-74,7 . 6,7 . 9,7.3,6 . 2,6 .8,6 . 2

75+,2 . 2,4 . 1,3 . 9,2 . 6,3 .4,2 .4

Figure 1: A CSV le called "smoking-by-age . csv".

Figure 1 shows the contents of a CSV file called  "smoking-by-age . csv".

The following code reads the CSV file into R and prints out the resulting data frame, smokingByAge.  This data frame. will be used in several of the questions in this exam.

>  smokingByAge  <-  read. csv("smoking-by-age. csv")

>  smokingByAge

group    X17   X18   X19     X20     X21     X22

1  15-17    3.8   4 . 1    3 . 5  1 .4  e   1 . 1  e   1 . 0  e

2  18-24  20 . 2   19 . 9  16 . 2     11 .8    11 . 0     8 . 0

3  15-24  15 .3  14 . 9  12 .7      8 . 6       8 . 2     5 .8

4  25-34  22 .7  19 . 0  20 . 2     14 . 6    11 .4    10 . 1

5  35-44  17.3  19 . 9  14 . 1     12 .8    10 . 1      9 .8

6  45-54   16 . 0  16 . 2  17 . 0    13 . 0     11 .8     9 . 9

7  55-64  15 . 0  12 . 6   12 .8    12 . 5     12 .8     10 .7

8  65-74    7 . 6    7 . 9    7.3       6 . 2     6 .8     6 . 2

9     75+    2 . 2   4 . 1    3 . 9       2 . 6       3 .4     2 .4

1.                                                                                                                     [10 marks]

Write down what the output of the following code would be.

(a)                                                                                                               [6 marks]

>  sapply(smokingByAge,  mode)

      (b)                                                                                                               [2 marks]

>  dim(smokingByAge)

      (c)                                                                                                               [2 marks]

                    >  colnames(smokingByAge)

The data frames shown below will be used in some of the remaining questions in this exam.

> maoriSmoking

group  2017  2018  2019  2020  2021  2022

16  Total  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

17      Maori  men  29 .7  31 .4  27.3  25 . 6  23 . 0  20 .4

18  Maori  women  36 .8  35 .4  35 . 0  25 .8  21 .7  20 . 2

> pacificSmoking

group  2017  2018  2019  2020  2021  2022

20  Total  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

21      Pacific  men  28 . 5  28 . 1  26 .8  20 .3  16 . 9  10 . 6

22  Pacific  women  18 . 1  21 .8   19 . 0  19 . 5  20 .4   10 . 1

>  asianSmoking

group  2017  2018  2019  2020  2021  2022

24  Total  Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

25      Asian men   12 .8  14 . 1  14 . 0    9 . 0   4.7    6 . 1

26  Asian  women     2 . 9    2 .3    2 . 5     1 . 5     1 .8    0 . 6

>  euroOtherSmoking

group  2017  2018  2019  2020  2021  2022

28  Total  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

29      European/Other  men   14 . 9  14 . 2  11 . 9  10 .3  10 . 5    8 . 5

30  European/Other  women  12 .3  11 . 2  11 .7    8 . 6     7 . 9    6 . 9

>  test1

group

1 not  this  row

2       Total  Row

>  test2

group

1 not  this  row

2    or  this  row

3       Total  Row

>  test3

group

1  Total  Row  One

2  Total  Row  Two

2.                                                                                                                    [10 marks]

(a)                                                                                                               [3 marks]

Write a function called findTotal().  The function should have a single argument, which is a data frame.  It should use grepl() to search the group column of the data frame. for values that contain the text  "Total".   The function should return a logical vector.

The findTotal() function should behave like this:

>  findTotal(maoriSmoking)

[1]   TRUE  FALSE  FALSE

>  findTotal(pacificSmoking)

[1]   TRUE  FALSE  FALSE

>  findTotal(test1)

[1]  FALSE   TRUE

>  findTotal(test2)

[1]  FALSE  FALSE   TRUE

>  findTotal(test3)

[1]  TRUE  TRUE

The values of the symbols maoriSmoking, pacificSmoking, test1, test2, and test3 can be found on page 3.

(b)                                                                                                               [7 marks]

Write  a  function called getTotal().   The function  should have a single argument, which is a data frame.  It should use findTotal() to search the group column of the data frame. for values that contains the word "Total" and then subset() to extract those rows from the data frame. and thengsub() to remove the word "Total" from the group column of those rows.  The function should return a data frame.

The getTotal() function should behave like this:

> getTotal(maoriSmoking)

group  2017  2018  2019  2020  2021  2022

16  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

> getTotal(pacificSmoking)

group  2017  2018  2019  2020  2021  2022

20  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

> getTotal(test1)

group

2     Row

> getTotal(test2)

group

3     Row

> getTotal(test3)

group

1  Row  One

2  Row  Two

The values of the symbols maoriSmoking, pacificSmoking, test1, test2, and test3 can be found on page 3.

The following code creates a list called tables and prints out the list.  This list will be used in some of the remaining questions in this exam.

>  tables  <-  list(maoriSmoking,

+                           pacificSmoking,

+                              asianSmoking,

+                               euroOtherSmoking)

>  tables

[[1]]

group  2017  2018  2019  2020  2021  2022

16  Total  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

17      Maori  men  29 .7  31 .4  27.3  25 . 6  23 . 0  20 .4

18  Maori  women  36 .8  35 .4  35 . 0  25 .8  21 .7  20 . 2

[[2]]

group  2017  2018  2019  2020  2021  2022

20  Total  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

21      Pacific  men  28 . 5  28 . 1  26 .8  20 .3  16 . 9  10 . 6

22  Pacific  women  18 . 1  21 .8   19 . 0  19 . 5  20 .4   10 . 1

[[3]]

group  2017  2018  2019  2020  2021  2022

24  Total  Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

25      Asian men   12 .8  14 . 1  14 . 0    9 . 0   4.7    6 . 1

26  Asian  women     2 . 9    2 .3    2 . 5     1 . 5     1 .8    0 . 6

[[4]]

group  2017  2018  2019  2020  2021  2022

28  Total  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

29      European/Other  men   14 . 9  14 . 2  11 . 9  10 .3  10 . 5    8 . 5

30  European/Other  women  12 .3  11 . 2  11 .7    8 . 6     7 . 9    6 . 9

3.                                                                                                                    [10 marks]

(a)                                                                                                               [2 marks]

Write  R  code that uses the list tables  (from page 6) and the functions lapply() and getTotal() (from page 5) to create a list of data frames that just contain "Total" rows and assign the result to the symbol totalTables.

The list totalTables should look like this:

>  totalTables

[[1]]

group  2017  2018  2019  2020  2021  2022

16  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

[[2]]

group  2017  2018  2019  2020  2021  2022

20  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

[[3]]

group  2017  2018  2019  2020  2021  2022

24  Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

[[4]]

group  2017  2018  2019  2020  2021  2022

28  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

(b)                                                                                                               [3 marks] 

Write  R  code  that  uses the  functions  do. call()  and  rbind() to  com- bine the list of data frames,  totalTables, into a single data frame. called ethnicSmoking.

The data frame. ethnicSmoking should look like this:

>  ethnicSmoking

group  2017  2018  2019  2020  2021  2022

16                    Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

20               Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

24                    Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

28  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

(c)                                                                                                               [5 marks] 

Write down what the output of the following code would be.

> groups  <-  split(ethnicSmoking[1:2,  ],  ethnicSmoking$group[1:2]) 

> groups

>  ranges  <-  lapply(groups,  function(df)  range(df[-1])) 

>  ranges

>  do. call(rbind,  ranges)

The following code creates a plot (Figure 2) that shows the prevalence of smoking overtime for different ethnic groups.

The code makes use of the data in the ethnicSmoking data frame. (from page 7). The code and plot will be used in some of the remaining questions in this exam.

> par(mar=margins) > plot. new()

> plot. window(xlim, ylim) >  axis(1,  at=years)

>  axis(right) >  box()

>  for  (i  in  1:numGroups)  {

+         y  <-  ethnicSmoking[i,  -1]

+        lines(years, y)

+        points(years,  y, pch=pch) +  }

> mtext(ethnicSmoking$group,  side=left,  at=ethnicSmoking$"2017", 

+           adj=adj,  line=.5,  las=horizontal)

 

Figure 2:  A plot of smoking prevalence for different ethnic groups.   The grey border around the outside is not drawn by R; it is just there to show the extent of the “page” that R is drawing on.

4.                                                                                                                   [10 marks]

The code shown on page 8 makes use of some symbols that have not yet been assigned a value.

Write R code that assigns values to each of the following symbols:

(i) margins

(ii) xlim

(iii) ylim

(iv) years

(v) right

(vi) numGroups

(vii) pch

(viii)  left

(ix)  adj

(x) horizontal

HINTS:

• The left margin of the plot has been made wider to leave room for the ethnic group labels.

 The y-axis range is calculated from the data for all ethnic groups.

•  The data symbols are filled circles.

 The ethnic group labels are right-aligned.

• The help page for themtext() function shown in Appendix B may be helpful.

The following code defines a function called middle() that will be used in some of the remaining questions in this exam.  Line numbers are provided in grey so that you can refer to specificlines in your answers if necessary.

The purpose of this function is to calculate a “middle” value for each age range in the group column of the smokingByAge data frame. (from page 2).  For each row of the group column, if the value contains a dash, the function splits the value into pieces either side of the dash, converts those pieces into numbers, and averages the numbers.  If the value does not contain a dash, the function searches for and removes any plus signs, converts what remains into a number and then calulates the average of that number and 100.

1   middle  <-  function()  {

2          n  <-  nrow(smokingByAge)

3          column  <-  smokingByAge[["group"]]

4          middle  <-  rep(NA, n)

5          for  (i  in  1:n)  {

6                  range  <-  column[i]

7                  if  (grepl("-",  range))  {

8                          bounds  <-  strsplit(range,  "-")[[1]]

9                          boundsNum  <-  as. numeric(bounds)

10                         middle[i]  <-  mean(boundsNum)

11                 }  else  {

12                        lower  <-  gsub("+",  "",  range,  fixed=TRUE)

13                         lowerNum  <-  as. numeric(lower)

14                        middle[i]  <-  mean(c(lowerNum,  100))

15                  }

16           }

17          middle

18   }

The following code and output shows that the middle() function returns a numeric vector of “middle” values.

> middle()

[1]  16 . 0  21 . 0   19 . 5  29 . 5  39 . 5  49 . 5  59 . 5  69 . 5  87 . 5

5.                                                                                                                    [10 marks] 

Identify all constant values in the middle() function code (from page 10) and, for each constant, describe what the constant represents.

Describe any overall assumptions that the function is making.

6.                                                                                                                    [10 marks] 

Identify all local and global symbols (excluding functions) in the middle() function code (from page 10) and, for each symbol, describe the mode of the R object that is assigned to the symbol.

The data frame. shown below, vapingByAge, will be used in some of the remaining questions in this exam.

vapingByAge

group      X17     X18     X19     X20     X21     X22

1  15-17  0 . 6  e  1 .7  e  2 .3  e  5 .8  e  8.3  e  15 .4   

2  18-24    4 . 1     4.4       5 . 0    15 .3    23 . 0     25 . 2   

3  15-24    3 . 0     3 . 6     4.3    12 .4    18.8    22 . 1   

4  25-34   4 . 1       5 . 2      5 . 9       9 .8    10 . 9    14.8   

5  35-44    3 . 2     5 . 0     4 . 6       5 .8    10 .3    10 .7   

6  45-54    2 .4     3 . 2     3.3     6 . 5     5 .7     6 .3   

7  55-64    2 . 5       2 . 2       2 . 1       2 . 6       5 . 2       4 . 2   

8  65-74     1 . 1       1 . 0      1 . 5      1 . 0      1 .7       2 . 5   

9     75+           S  0 . 2  e           S  0 .4  e  0 .8  e  0 .7  e



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图