代做Electrical and Computer Engineering代写C/C++语言

Problem 1: 1D Problem (17 pts)

A solid nanowire is subjected to a diffuse source of high energy gamma rays, resulting in a small number of local defects. An electron in the nanowire becomes bound and trapped by one of the local defects, whose potential energy we model as V(x) = −aδ(x) .  We would like to know the rough spatial extent of the trapping.  To do so, find the value x0 such that the electron has a 50% probability of being found in a range around the defect given by |x| < x0 .

Problem 2: Low Dimensional Spaces, Dirac (17 pts)

Consider a three-dimensional ket space spanned by basis vectors |1⟩ , |2⟩ , and |3⟩ and operatorsA(̂) andB(̂) represented by the matrices below where a and b are real:

a.) WriteA(̂) andB(̂) in terms of |1⟩ , |2⟩ , and |3⟩ and corresponding bras. (6pts)

b.) Is the spectrum of observables A and B degenerate?  Recall that the spectra of an operatorQ(̂) is given by solving det(Q(̂) − λ 1(̂)) = 0 for all values of λ . (6pts)

c.) DoA(̂) andB(̂) commute? (5pts)

Problem 3: Hydrogenic Atoms (66 pts)

As discussed in class, you will be solving for the eigenenergies and eigenfunctions of the hydrogen atom.  The starting point is qualitatively identical to the case of treating the vibrational and  rotational  properties  of a two  chemically  bound  nuclei  with  quantum mechanics.  The I’m independent Schrodinger equation for the system is:

By allowing ψ = ψtrans ψr ψθφ and switching to the reduced mass reference frame.

(which we did in class for the diatomic molecule, and I won’t replicate here), the above can be rewritten as … .

with

And

But in (2),we don’t care about the translational properties of hydrogen, we care about the internal properties ψr  and ψθφ and associated energies.  So, we toss out the translational part of (2).  Also, if we think for a moment about what potential energy is at play, it is the Coulomb potential between and electron and a proton; or for future flexibility in modeling ions, let’s say between an electron and Z  protons … .

But this is a spherically symmetric “central potential,” and we have already solved the angular part for all of those kinds of problems to be ψθφ = ylm  !! So we can now just jump straight to the SE for a central potential in spherical coordinates, which is

and with (3) into (4) and some algebra we have … .

So, your task from here amounts to solving equation (5).    You will proceed in a similar way as we have done with other non-trivial equations, by first considering a well-known differential equation, called the “associated Laguerre differential equation”:

The equation has two general solutions ifv and β in (6) are non-negative integers.

which are “confluent hypergeometric functions of the first kind” and Laguerre polynomials, respectively.  We have come across the 1F1   before, and as you may recall, 1F1   blows up liker2 , so the appropriate probability density function, in the radial coordinate in spherical polar coordinates, would go like … | 1F1 |2r 2 dr ∝ r 6  … .. and not be normalizable in the limit as r → ∞ .  So, we toss it!  Ok, now your part. [Each part 6 points]

a.) Assume the radial wavefunction can be written as ψr   = R(r)r−1 .  Now, simplify (5) to aform. like R ′′ + = 0.  Write out the entire equation with the blank filled in and label it as equation (8).

b.) Proceed toward a solution  by  performing  a  non-dimensionalization  procedure  by introducing dimensionless energy λ and radius p with the following definitions:

Use these transformations to eliminate all occurrences of E andr in equation (8) that you just derived. Take care to appropriately transform. the derivatives.  Eventually arrive at an equation of form. Label it equation (12).

c.) Now continue the process by assuming the additional functional form.

in and label that equation as (14).

d.) Now continue the process by assuming one final functional form. for f:

Simplify (14) to a form. pg′′ + = 0. Derive the entire equation with the blank filled in and label that equation as (16).

e.) Equation (16) should be in the form. of the associated Laguerre differential equation. Based on the information provided thus far in the problem, especially relating to the Laguerre differential equation, its solution and constraints, what are (I) the solutions to (16) with yet unsolved normalization constant and (II) the conditions that must be placed on λ − l − 1 ≡ nr  (which we have defined as the “radial quantum number” nr ) and the conditions that must be placed on 2l + 2?

f.) Using the condition just found on λ − l − 1 , must λ be a positive integer or a negative integer?  Show your work.

g.) Now relabel λ as n , as it is actually the “principal quantum number” known to you from introductory chemistry. Use logic & inequalities at your disposal to show how the principle & angular momentum quantum numbers are related, specifically, prove l ≤ n − 1,  n  ∈ {1,2,3,4 … . }

h.) Use   the   newly   found   conditions   and   labeling   conventions,   along   with   the transformation equations  introduced  in  part  b to determine the eigenenergies  of the hydrogen atom. Express your final answer in terms of the modified Bohr radius, aμ , where Additionally, verify that E1  ≈ −13.6 ev.

i.) Use your result from part e.) (I), (15), (13) and our first assumption from part a, to write out ψr,nl (r) and label it equation (20). Use the following notational definition to make things look clean:

j.) Determine the normalization constant, Nnl .   For this, we  need to  utilize an  integral relation true for the Laguerre polynomials:

as well as the fact that the Laguerre polynomials are real-valued. NOTICE: I chose a newer normalization convention/approach for this problem, as a result, the normalization constant will be slightly different from the one I presented in class.

k.) Lastly (and finally!) write out the normalized eigenfunction as an explicit function of r, θ, & φ indexed by the appropriate quantum numbers (excluding spin).   Note, the final answer should still preserve the aμ and Z  notations.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图