代做MEC5881 Practice Questions代做留学生SQL 程序

MEC5881 Practice Questions

Question 1

A system is expected to produce a response overtime, y(t), defined by the ordinary differential equation

dt/dy = −1.5y

At time t = 0, the response y = 4.7.  Use the forward Euler’s method to find the solution at time t  = 5, using a time interval Δt  = 1.

Question 2

The analytical solution to the response in Question 1 is

y(t) = 4.7 exp(−1.5t).

Tabulate the absolute error between the estimates of y obtained from the time integration in Question 1, and the true solution, |y − yn|.  From t = 1 onward, does the error increase or decrease?  Would this correspond to astable or unstable time integration?

Question 3

A different system is expected to produce a response overtime, y(t), defined by the ordinary differential equation

dt/dy = −3.2y

At timest = −0.4, −0.2, and 0, the responses are respectively yn−2 = 343.8387578, yn−1 = 181.3035721 and yn  = 95.6.

a)   The forward Euler method time integrates via

yn+1  = yn  + Δtfn.

Simplify this equation for this problem and rewrite it for yn+1 .

b)   The third-order backwards differentiation method time integrates via

6/11yn+1  = 3yn  −2/3yn−1 + 3/1yn + Δt fn+1 .

Simplify this equation for this problem and rewrite it for yn+1 .

c)    Using a time step size Δt  = 0.2, integrate the solution forward in time from t  = 0 to t  =  1 using each of the forward Euler and 3rd  order backwards differentiation methods.  Which result to you expect will be more accurate, and why?

Question 4

The probability of failure of a system comprising two interacting components is

Psys = P1P2.

Draw the fault tree corresponding to this expression (include any low-level input events and any pertinent logic gates).

Question 5

A small system has the following fault tree diagram.

Find an expression for the failure probability of this system Psys, given the failure probabilities of low-level components 1, 2 and 3 being P1, P2  and P3, respectively.

Question 6

The probability of failure of a system comprising three interacting components is

Psys  = P1 ( 1 − (1 − P2)(1 − P3)).

Draw the fault tree corresponding to this expression (include any low-level input events and any pertinent logic gates).

Question 7

A system has the following fault tree diagram.

Find an expression for the failure probability of this system Psys, given the failure probabilities of low-level components 1, 2, 3 and 4 being P1, P2, P3  and P4, respectively.

Question 8

The probability of failure of a system comprising six interacting components is

Psys  = 1 − (1 − (1 − P1)(1 − P3)) ( 1 − (1 − (1 − P2)(1 − (1 − P4)(1 − P5)))) (1 − P6).

Draw the fault tree corresponding to this expression (include any low-level input events and any pertinent logic gates).

Question 9

The NASA Space Shuttle employed a redundant avionics system comprising four (4) computers.  If a single computer fails, the system integrity remains intact because the other three computers produce consistent output.  If a second computer fails, the remaining two sustain operational performance.  The Shuttle would be lost in the event of a third computer failure, as the system would not know which of the last two should be relied upon.  If the probability of failure of a single computer on a given mission is 0.0016, what would the probability of avionics system failure be for the four-computer redundant system?

Question 10

A mechanical component has a failure density function

where time τ is measured in weeks.

a)    Find the function expressing the probability of failure after time t.

b)   Find the reliability probability as a function of time.

c)    Find the hazard function.

Question 11

An electronics component manufacturer develops a new capacitor for application in high humidity environments. The manufacturer seeks to determine the failure rate for the component at its most extreme operating conditions.  One thousand (1000) prototypes are produced and are simultaneously   tested. The test put the capacitors into operation while exposed to the specified environment. The test ran for 90 days.  Every 10 days, the number of failed capacitors was counted and recorded.  The results are tabulated below.  Based on these results, calculate the failure rate (failures per day) within each 10 day block.

Time interval (days)

Failures

0 to 10

375

10 to 20

246

20 to 30

126

30 to 40

102

50 to 60

57

60 to 70

32

70 to 80

22

80 to 90

14

Question 12

An automotive manufacturer seeks to stress-test a new engine they are seeking to install in a newline of petrol-powered utility vehicles.  The test involves taking 8 prototypes of the new engine, and running each of them until failure.  The time to failure for each engine is recorded.  Estimate the failure rate for the new engine.

Engine

Time to failure (hours)

1

72.2

2

66.5

3

60

4

63.8

5

63.3

6

75.9

7

60.2

8

105.6

Estimate the meantime between failure for this new engine under the stress test conditions.

Question 13

An aerospace manufacturer is designing a control system for an unmanned aerial vehicle (UAV).  To provide some redundancy, two avionics computers (Avionics 1 and Avionics 2) are arranged in parallel. The avionics computer(s) supply commands to an actuator-controlled rudder.  Two design alternatives are being considered.

In Option A (sketched below), the actuator is duplicated, so that Avionics 1 commands Actuator 1, while Avionics 2 commands Actuator 2.  In normal operation, both actuators will control the rudder in unison.

In the event of either an avionics or actuator failure, the surviving operational path continues to control the UAV.

In Option B (sketched below), the avionics computer signals are fed to a single actuator.

If the avionics computers have a failure probability of 0.1% per flight hour, while the actuators have a failure probability of 0.01% per flight hour, which of Options A or B has the greater reliability?





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图