代做IM942 Visualisation代做留学生R程序

IM942 Visualisation

‘Graphical Report ‘- guidelines

This second piece of coursework gives you the opportunity to develop your own coding and visualisation skills in R. You will produce a visualisation using the data on Australian wildfires that is provided on Moodle. To find out more about the data please follow the links below.

As introduced in the week 4 lecture, there is some controversy surrounding a visualisation of the fires. Using the same data, you have the opportunity to develop your design, which may be in response to the ‘fake news’ map censored by Instagram, or may take another direction.

1.   You have some freedom in what question you approach through the visualisation. What

would make a salient visualisation? Maybe your visualisation could compare techniques? Or emulate and explore an aspect of a design produced by a news outlet? Or could you explore some of the other dimensions of the data?

2.   You will provide some analysis and critique of your visualisation, and you can provide a personal reflection on how this has influenced your understanding about ‘visualisation’ .

3.   You will provide the R code for your visualisation in an appendix. This is mandatory. The

work will be your own and if you used a code snippet that you found on the web it must be referenced as such (e.g. creator, data, and source). Likewise, if you take inspiration from someone else’s work reference it or acknowledge it. Coding can be a very social activity but the work should be your own and indicate where it is not. Apply the same standards you would to the text, and if in doubt aska member of staff about how this should be approached. Note that the TunrItIn will recognise code which is not your own!

4.    Your report will explain what you did, how you did it, and why you did it in that way. It is a short report so please summarise the important decision points rather than giving a blow by blow story of what happened “ … and then I loaded in the data which seemed to work fine at first but I had togo back and check that I had done it properly as my first line of code didn’t work, so I asked a friend and they said I hadntdone it properly so I looked up the issue on the internet. Boiled the kettle and made a cup of tea, and then found out I had a comma missing which I then put in and the code worked…”

5.    Provide your main visualisation as figure 1 and on the first page of your report after the title and student number, but before the introduction. The visualisation must work within the constraints of the A4 page of your report (accounting for the margins). Your visualisation should be produced so it can be understood without the main text, i.e. provide sufficient titles, subtitles, annotations and a reference to the data should be added. You could think about it as producing a graphic that could be tweeted. Design the visualisation for the report and not how it is seen in the graphics device in R studio - i.e. take care with point and font sizes and labelling.

Data

•    See the IM921 Moodle page for the csv file and the ‘readme’ text file from the download.

•    The data was downloaded via NASA’s FIRMS interface (Fire Information for Resource

Management System) -https://firms.modaps.eosdis.nasa.gov/map/#z:5;c:137.4,-27.9;t:adv- points;d:2019-12-05..2020-01-05;l:dark_gray,firms_viirs,firms_modis_a,firms_modis_t

•    The lecture notes (Week 4 Part 3) have a variety of links to resources.

Common problems

Plotting thousands of points in one plot so they overlay each other. Why not recognise that occlusion issue and work with it? Can you respond to such issues in the design?

Using the RGB ‘primary colours’ (green for land, blue for sea and red for fires). R can produce ‘any’ colour. Use a ‘colour picker’ and do some research (see below).

Not carrying out any visual research. Why not provide three sources of visual inspiration? They could be previous visualisation work, inspiration for colour or methodological, for example.

Saying that, objectively, your visualisation succeeds in every way. Can you articulate why something is subjective? That might lead you to a more balanced, critical argument.

Trying to show everything. You will not be able to. The data has 95361 observation across

14 variables and, more importantly, the human perceptual and cognitive systems are limited. What does showing everything even show?

Not stating a purpose for the visualisation or setting up a scenario. On what basis is your design effective? Or impactful? Why does it work? Or not? Adding more context and constraints to the design will inform. the design process and later direct provide some direction to the critique and analysis.

Not asking for help early on.

Ignoring the notes below.

Notes (some key notes are in bold)

No interactive plots.

No Rainbow colour schemes (unless you are using it tactically).

No ggPlot unless there is a methodological rationale.

After 4-5 coding labs, and the work you have done outside of the labs, it is not expected that you have become an expert “visualiser” or have miraculously become a software engineer. The expectations are set by the level of the material you have been given and what it is feasible to do in this time.

Images other than your final design can be used to illustrate your design process (again, please be concise rather than providing every single visual you produced), or to show material which you took inspiration from.

Research the data and investigate if any visualisations have been produced from this data.

There are limitations on how much we can understand from the documentation. This is a very real situation in the world of work. Put effort into understanding this aspect of the data i.e. what is difficult to know – and recognise these limits where important in the report, and you may also incorporate that into your design.

•    The general notes from coursework 1 apply. For example, rigorous referencing, reference    materials, use of images, referencing images, terminology (your visualisation should not be described as ‘pretty’) …

•    This is a graphical analysis rather than a statistical analysis. It is acceptable for you to use

statistical outputs in your visualisation if want to, however they will only be considered in terms of what they add to your visualisation.

•    If you think your visualisation is perfect then think again. Are there really no areas where your visualisation could be improved or where its form. limits its function?

•    You can decide how you design it. You may design it yourself, or, get some inspiration from

elsewhere. Remember to reference your inspirations! There is a whole world of inspiration you could draw from that includes but is not limited to visualisation outputs. However, remain

critical about what you did and why. If you chose something you thought was “cool” don’ttry to hide that. Recognise what made it “cool” and explain it in the report. A few places to get started include:

Accurat Studio / Giorgia Lupi  |https://www.accurat.it/works/

IBM Design Language |https://www.ibm.com/design/language/inspiration

Nicolas Feltron |http://feltron.com/

Mortiz Stefaner  |http://truth-and-beauty.net/

Ben Fry & Fathom |https://fathom.info/projects/

Periscopic |http://www.periscopic.com/our-work

•    Make it clear what you are trying to achieve with the visualisation. Is it for Exploring, Explaining, Exhibiting (Expositing), Evaluating or Exaggerating some aspect of the data and the visualisation?

•    There are limits to what we can process and understand visually (as we have discussed in class). A clean, salient graphic may well support you goals more effectively than trying to show every skill you have developed and every data point that the graphic has to offer.

•    You can produce avisualisation that is composed of multiple visualisations, for example by

combining plots in a layout. However, if you stitch to different visualisations together it is

obviously better that you did it for a reason rather than adding an extra pie chart just because.

•    To get the referencing information for R you can type ‘citation()’ into the console. You can use

the returned text – e.g. R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/ - and format it according to your referencing style, or enter the bibtex entry in your reference management software. You can use the citation function for packages also – e.g. ‘citation(package="base").

•    Remember, if you think what you have done is ‘pretty’ then please pause to consider if you can define ‘pretty’! What is ‘pretty’?





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图