代做Project Seven: Cloning, continued代做留学生SQL语言程序

Project Seven: Cloning, continued (20 points)

In this second part of a two-part project you will explore the basic principles of cloning including primer design and finding compatible restriction enzyme sites between a cloning vector and an insert. These are widely used techniques in molecular biology labs.

I. Review Project Six (Quiz, 5 pts) In particular, you'll continue working with the primer pair you designed in Project Six.

II. Primer Testing (8 pts)

Before we modify the primers (from Project Six) with the added cut sites, we'll test whether or not they work by doing an “in silico PCR” reaction using the UCSC Genome Browser.

Set "maximum product size" to 6000. Leave everything else as is.

· Set the “max product size” to 6000.

· For the “Genome” drop down menu, select “Human”.

· For the “Assembly” drop down menu, select “Dec 2013”.

· Set "Target:" as "GENCODE Genes".

· Click "Submit".

1.  Does the results page show the the gene you meant to amplify? If not, you need to figure out what went wrong and try again. (1 pt)

2.  How long is this PCR product? (1 pt)

3.  Click on the title of the first result. Provide the chromosome and nucleotide positions of this result: (2 pts) chr___; position____________________-_____________________

When answering the question below, remember that your forward primer base-pairs to the complementary sequence, so it will look just like your coding strand, but the reverse primer base-pairs to the coding strand. In other words, one of your bold regions will match the primer sequence, and the other bold region will match the complement of the other primer sequence. Look at the generic picture below for help in visualizing this.

4.  Copy and paste the CFTR mRNA from the NCBI GenBank record below. Highlight in bold the sequence corresponding to each primer (in one case the highlighted region will match the bases in the primer; in the other case, the highlighted region with correspond to the complement of the primer). (2 pts)

5.  On the same sequence, indicate (by highlighting or circling, for example) the start codon and the stop codon. Remove most of the lines in between to save space on the page.  (2 pts)

III. Designing restriction enzyme cut sites into your primers (7 pts)

Your primer pair will allow you to PCR amplify many copies of the sequence from a batch of cellular mRNA, but you also want to clone the sequence into your vector (plasmid) so that you can express the gene. Remember that none of your plasmid MCS sites matched the available sites in your sequence so you'll have to engineer cut sites into the 5' ends of your primers. You'll use KpnI at the 5' end of the sequence, and BamHI at the 3' end, which both leave "sticky ends".

6. For each restriction enzyme below, write the recognition site in its double-stranded form, placing a slash sign (/) at the cut site on each strand. Label the 5’ and 3’ ends. You can find this information by mousing over the enzyme name on the pFLAG-CMV-1 map. The first of four strands is completed for you. (3 pts, one for each of the other three strands-plus-cut-site, including complementary strands)

KpnI:  5’GGTAC/C 3’

BamHI:

Now you will add the RE sequence to the 5' ends of each of your primers from Project 6. However, for the enzymes to cut efficiently, you'll also need to add a couple more nucleotides to each end after that. Let's use "CC", so each pair of primers will begin with CC.

7.  Show the new primer sequences below, including the new cut sites. Be sure to include both the sense and anti-sense strand for each primer. Also, include the 5’ and 3’ labels to mark the orientation. (2 pts for each primer)

Forward primer:

Reverse primer:

A PCR reaction using these primers will result in millions of copies of the sequence, flanked by the enzyme sites. You can then cut the products with KpnI and BamHI, leaving sticky ends-- this will be your 'insert'. At the same time, but in another tube, you can cut the plasmid vector with the same two enzymes. Then you'll allow the insert to join up by its sticky ends to the matching sticky ends of the vector. Presto!




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图