代做FIT5125 / FIT4005 Research Methods for IT Semester 2 2024 Assignment 3代写Processing

Assessment

Faculty of Information Technology

FIT5125 / FIT4005

Research Methods for IT

Semester 2 2024

Assignment 3: Weeks 8 & 9

Value

This assignment is worth 20% of the total marks for FIT5125 / FIT4005

Assignment due date

Monday, 14 October 2024 at 4:30pm (Week 12)

Submission method

Submit to Moodle:

.   a separate PDF for the exercises for Week 8 & 9.

Assignment Criteria

This assignment relates to the material studied in Weeks 8 & 9.

Week 8 Descriptive Statistics     Week 9 Inferential Experiments

Weighting: 20 marks                       Weighting: 20 marks

See page 3.                                     See Page 5.

This is an individual assessment; it must be your own work and expressed in your own words.

A marking guide is available on Moodle.

 There are specicrequirements for le names on your submission (see the instructions for each task).

Assessment rules:

1. Note that plagiarism detection procedures may be applied to each submission. See the University rules and regulations regarding plagiarism and resulting penalties. Any case of plagiarism detected will mean automatic failure of the entire assignment. Note that even where TurnitIn reports a high similarity score, this may simply be the result of text that is part of the original question or a correctly referenced quotation (such cases are not plagiarism).

2. Late submissions will incur a penalty of 5% per day, see:

https://publicpolicydms.monash.edu/Monash/documents/1935752

3. Submissions should follow the instructions for each task, described under "What to Submit".

4. Monash policy on Special Consideration is available at:

https://www.monash.edu/exams/changes/special-consideration

5. In line with Monash University policy, we aim to mark and return work within 10 working days of submission where possible.

Assessed Exercise (Week 8)

"Telling a data story"

Telling a coherent story with your data is a core part of the research process. Statistics can be used in myriad ways to describe any given dataset, so it is important to use the appropriate measures and visualisations to enrich and provide context to a narrative of your data. Although in a perfect world we would ask a question and then design a process to capture data that answered that question, in reality we often have to undertake an initial data collection exercise to help us formulate our research questions.

In this assignment, students are required to tell a story about some initial data collected from all Australia-based students taking FIT5125 (Reseach Methods for IT). The data collected for this assignment has two components: (1) student experience of food insecurity and food purchasing behaviour (using an anonymous   online questionnaire); and (2) a single anonymous 24-hour dietary recall using the Intake24 platform. that was introduced in the Week 1 "Live Podcast".

In order to collect this data, all Australia-based students are required to complete the both the questionnaire and the Intake24 survey by 4pm Thursday 26 September 2024. You will be sent a link to the questionnaire on  the day of the release of the assignment (Monday 23 September 2024). Note: all students will be sent the link  to the questionnair but we'll only be using the Australia-based student data for the assignment (since Intake24 is for an Australian diet). On Friday 27 September, the anonymous data for all respondents will be made available in the form. of two CSV files. This is the data for which you are required to tell a data story about.

The idea for this assignment came from a researcher at the University of Sydney (Prof. Margaret Allman- Farinelli) in collaboration with Dr. Anu Ivaturi and Dr. Tracy McCaffery (Monash University). They are undertaking research on food insecurity in Australia's international student population.

We have designed this assignment to provide all Australia-based students with the option to participate in this research by agreeing to anonymously contribute their questinnaire response data, your Intake24 recall data,   and you data story.

When Australia-cased campus students complete the questionnaire they will be given the option to consent to participate in the study. This is completely optional and at no time will the Australia teaching team for FIT5125 (CE, lecturer or tutors) be made aware of who chose to participate in the study or not. This is to avoid any actual or perceived risk of 'coercion' (as we studied in Week 2's material on research ethics).

Complete the following:

1. Complete the questionnaire and the 24-hour dietary recall by 4pm Thursday 26 September 2024.

2. On Friday 27 September (or later) download the anonymous data (questionnaire responses and Intake24 responses) from the unit Moodle page.

3. Formulate a research question that you want to ask of this data. (max. 50 words)

4. Select 2 appropriate descriptive metrics that tell you something about the data, and calculate those

metrics on your data, using a tool of your choice. Present the fields from the dataset used and the resulting calculated values, and elaborate on what those values are revealing about your data. (max. 50 words)

5. Create an appropriate visualisation to help explain what you are saying about the data. The visualisation should be fully annotated.

6. Write a short narrative description of your findings as they relate to you research question, referencing both your chosen metrics and visualisation. (max. 250 words)

What to Submit

1. A PDF document, named "STUDENT-ID-Week8.pdf" containing your response to the assignment.

How Much to Write

There is a strict word limit for your answers detailed above. For submission over the specied word limits, only the parts of answers within the word limit will be awarded marks.

What to Know

   If you have any questions about the assignment, you should submit them as a public post to the Ed forum (under the sub- category "Assignments") so that all students have access to the question and CE or admin tutor's response.

.  This is an individual exercise that forms part of the formal assessment for the unit, you must therefore work alone and follow Monash Universitys policies, procedures and regulations relating academic integrity, plagiarism and collusion (see Moodle).

.  As this is a formal assessment tutors are not allowed support to directly, however, they can provide feedback on any studio activities (during the studio).

.  The aim of this assessment is to evaluate your understanding of basic statistics, and to assess your ability to correctly apply basic statistical computations.

Assessed Exercise (Week 9)

"Working with hypotheses"

In this exercise you will formulate a hypothesis, prepare a plan of your study (including statistical testing) and justify it, including the potential limitations of it. Consider the topic of artificial inteligence and data privacy. Imagine you are asked to develop this research area further.

Complete the following:

1. Propose a hypothesis. It should be something you can realistically test using one or more of the

statistical tests covered in this course. It can concern any subtopic or natural phenomena which relates in some way to the topic: artificial inteligence and data privacy. (max. 50 words)

2. Write down the null hypothesis. (max. 50 words)

3. Write down the independent and dependent variables as well as at least three confounding variables.

(max. 50 words)

4. Imagine you had a budget of up to 1000AUD (in addition to up to 100 hours of your time to conduct the study). Explain what data you will collect to investigate this hypothesis and how you would obtain the data in a practical fashion. (max. 100 words)

5. What statistical test(s) do you expect to conduct to test your hypothesis. Provide your assumptions of the data and why such tets(s) are appropriate. (max. 150 words)

6. What are the limitations of your study? Write a paragraph that explains these limitations as well as potential future investigations you might conduct. (max. 200 words)

7. Present a different narrative that could have been presented from your results, highlighting how the data needs to be selected, methods changed, or process otherwise manipulated to support this different interpretation. (max. 50 words)




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图