代做CIV 1320 Indoor Air Quality Homework Assignment 2代做回归

CIV 1320 Indoor Air Quality

Homework Assignment 2

September 18, 2024

DUE: October 9, 2024 9 am

55 pts total

1. Mass Balance - ETS 10 pts

Cigarette smoking produces a wide variety of compounds that are known as environmental t   obacco smoke (ETS). The average emissions of particulate matter (PM2.5) from cigarettes are 13.7 mg/cigarette. The purpose of this problem is to predict the levels of PM2.5  that result from smoking a single cigarette for 10 minutes in a small apartment (50 m3).  The only removal mechanisms of particles are dilution by means of 30 m3/h of natural infiltration and deposition to surface with a loss rate of 0.1/h.  There are no other sources of particulate matter inside or outdoors.

a)Derive and solve the governing equations for PM2.5  concentration as a function of time in the apartment.

b)Plot your results in the form. of concentration vs. time with the x-axis extending for 3 hours from the end of the smoking episode.

c)If the smoker smokes one cigarette each 30 minutes, what will the concentration be after 3 hours in the space?

d) Repeat a) and b) using a portable air cleaner with a CADR of 100 m3/h.  What is the mean effectiveness of the air cleaner while the smoking is occurring?

2. Ozone generation indoors 15 pts

This question uses data that is in a file hw2 2 data.xls.

You are interested in determining the emission rate of an air “cleaner” that generates ozone. To measure the ozone emission rate, E (mg/h), you put the air cleaner in 20 m3 chamber and turn it on. For the entire experiment, the air exchange rate (Q/V) for the chamber is 0.5/h (all with a dedicated ozone free air supply). After it has run for 70 minutes, you turn the air cleaner off and continue to measure the ozone concentration in the chamber for 20 more minutes. Using the data in the file, answer the following questions.

a) What is the ozone emission rate (mg/h) for the air cleaner?

Hint: Calculate the deposition loss rate from the last 20 minutes of the data, and use this value in the analysis of the first portion of the data set.

b) Is the ozone concentration in the chamber at steady state at t = 70 minutes?  If you assume steady state at t = 70 min, what is the emission rate (mg/h).  Does the ozone concentration need to be at steady state for your answer in part a) to be valid?  Justify your answers.

3. Comparing portable and centralized air cleaning                                                          30 pts

You are faced with the task of making a recommendation about whether to use portable air cleaners or ordinary HVAC filters in residential environments for PM2.5.  The data about relevant homes and air cleaners is in the table on the next page.

a)  Derive a time-averaged equation for effectiveness for both portable air cleaner (assuming that it runs constantly) and HVAC filtration.  What assumptions are you making with these equations?  Are they reasonable?  Are they equally reasonable for both types of air cleaning?

b)  Using the data in the table above generate a Monte Carlo model for both effectiveness equations.  You will need to use software to do this.  The following instructions are for Excel, but many other software packages can do this (and do so even better…).  Excel has two ways of generating random numbers the rand() function which generates a random number between 0 and  1 and randbetween(lower,higher) which generates a random integer between lower and higher.   Note that all random numbers change every time a worksheet is recalculated.  There are ways of turning this on and off that are detailed in the help file for Excel.  The trick is going from a uniformly distributed random number to a different statistical distribution.  For uniform. distributions of continuous variables you can just scale the rand() function by doing rand()*(higher-lower)+lower where higher and lower are the higher and lower value of the ranges.  For other statistical distributions you  can use functions such as norminv and loginv which take a probability from 0 to 1 and convert to a value from a distribution with known parameters, so, for example norminv(rand(), mean, standard deviation) will generate a random value from the normally distributed variable that has a mean value of mean and a standard deviation of standard deviation.  One quick clarification on the lognormal functions in Excel is that they typically expect log-transformed parameters so you have to use the arguments ln(GM) and ln(GSD) rather than the actual values.  Also, some values could theoretically be not physically realistic based on the statistical distribution and so they have minimum  values that you can address with an if function.

Variable

Distribution

Parameters

Air exchange rate, λ

Lognormal

Murray & Burmaster (1995), all homes

Deposition loss rate, β

Normal

Williams et al. (2003), k

Portable CADR

Uniform

50 – 500 m3/h

Floor area

Normal

µ = 200 m2, σ = 60 m2, min 50 m2

Ceiling height

Fixed

2.5 m

Run time fraction

Uniform

5-20%, uniform

HVAC Filter efficiency

Uniform

30-70%, uniform

Recirculation rate

Normal

µ = 4/h , σ = 1/h, min 0.5/h

c)   Try copying your effectiveness calculations for 100 cells (or 100 loops of an iterative

approach) and seeing if the median effectiveness changes by more than 1 percentage point with each recalculation. If so, try 500 cells, then 1000 cells, then 5000 cells, then 10000 cells. If easy, keep going until you meet the 1% criterion (if you haven’t already met it).   How many iterations would you recommend to meet this criterion?  Why does the median make sense to use as an averaging statistic, rather than the mean?

d)  Which air cleaning strategy is more effective?  By what amount?

e)   If you want a strategy that has an 80% or better effectiveness in half of the homes, how much would you have to increase CADR (to make it easier, keep the relative range of higher/lower = 10 as in the original problem)?  Is this practical?  Can you achieve this same performance by improving filter efficiency?  If not how much do you have to increase the recirculation rate (assuming 100% runtime) with the same filter to achieve this performance metric?  Is this feasible?  Which approach (portable or central) would you recommend for a national strategy?

f)   How sensitive is your answer d) to the following changes?

a.   If b = 0.01 (fixed), CADR and filter efficiency stays approximately the same (for example, smaller particles).

b.   If b = 1 (fixed), CADR stays the same, and filter efficiency increases to 80-100% (for example, larger particles).

g)  What would you do if you had an important variable with no knowledge of the distribution? How could you integrate it into this model?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图