代做STA 4001 Stochastic Processes Fall 2024 Homework 2帮做Python语言程序

STA 4001

Stochastic Processes

Fall 2024

Homework 2

Due Oct 8-th Midnight

1.  A total of m white and m blackballs are distributed among two urns, with each urn containing m balls. At each stage, a ball is randomly selected from each urn and the two selected balls are interchanged.  Let Xn denote the number of blackballs in urn 1 after thenth interchange.

(a)  Give the transition probabilities of the Markov chain Xn , n ≥ 0.

(b)  Find the limiting probabilities and show that the stationary chain is time reversible.

2.  Consider a Markov chain {Xn , n ≥ 0} on the state space E = {1, 2, 3} with transition probability matrix given by

 

Assume that the (initial) distribution of X0 is the uniform. distribution on E. (a)  Calculate P(X3  = 2, X1  = 3).

(b)  Calculate P(X4  = 1, X3  ≠  1, X2  ≠  1|X1  = 1).

(c)  Determine whether a limiting distribution exists for this MC, justifying your answer.  If so, find the limiting distribution.

3.  Four people sit at a round table for dinner. As appetizer, they play a game where a ball is passed from one to another as follows. At each round of the game, the person holding the ball will choose at random one of his two neighbors and then pass him the ball. The four people are numbered 1, 2, 3 and 4 in a clockwise order.

(a)  Explain briefly why the successive positions of the ball in the game form. a Markov chain. (b)  Give the transition matrix of the Markov chain.

(c)  Find the communication classes of the chain. (d)  Find the periods of the states of the chain.

(e)  Does the chain have limiting probabilities?

(f)  Mr. Kwok, the person with the number 4, is now holding the ball. Find the expected number of rounds to be played until the ball goes back to him.

4.  A coin is successively flipped and its probability of showing up heads isp  ∈ (0, 1). Let Y1 , Y2 , . . . be the sequence of outcomes. For n ≥ 0, let

Xn  = (Yn+1, Yn+2, Yn+3),

that is thenth triple of consecutive outcomes from the flips. The sequence Xn is a Markov chain on the state space

E = {TTT,TTH,THT,HTT,THH,HTH,HHT,HHH}  :=  {1, 2, 3, 4, 5, 6, 7, 8},

where T and H denotes tail and head shown in the flips while the 8 possible states are also numbered from 1 to 8 in the order given above.

In all the calculations, we denote q = 1  p to simplify the formulas.

(a)  Suppose we just see THH as the last three outcomes.  Determine the probability to observe, after two more flips, the triples THH and HTT.

(b)  Determine the transition matrix of the chain.

(c)  Determine the communication classes of the chain.

(d)  Determine the periods of the states.

(e)  Show that the long run proportions of the eight states in E exist for the chain and determine these proportions.

(f)  The triples appearing in the chain are overlapping for near times: for example by definition the last two flip outcomes {Yn+2, Yn+3} in Xn  are identical to the first two ones in Xn+1 .  We now consider the non-overlapping triples in the sequence as follows:

Y1 Y2 Y3 , Y4 Y5 Y6 , Y7 Y8 Y9 , . . . .

Clearly, the outcomes from these non-overlapping triples are still the eight ones in E.

Show that the long run proportions of the eight states in E from these non-overlapping triples still exist and they coincide with those found in (e).

5.  I have 4 umbrellas, some at home, some in the office.  I keep moving between home and office.  I take an umbrella with me only if it rains.  If it does not rain I leave the umbrella behind (at home or in the office). It may happen that all umbrellas are in one place, I am at the other, it starts raining and must leave, so I get wet.

(a)  If the probability of rain isp, what is the probability that I get wet?

(b)  Current estimates show that p = 0.6 in Edinburgh.  How many umbrellas should I have so that, if I follow the strategy above, the probability I get wet is less than 0.1?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图