代做S322 Assignment 1 – Fall 2024代做留学生R程序

S322 Assignment 1 – Fall 2024

Due: Oct 3, 2024, ONLINE in Crowdmark

Marking: Please note that the TAs may not be marking all questions in this assignment. The exact questions that will be marked will not be determined until after the due date.  BECAUSE of this, all questions will say 10 marks until westart marking.  This is a Crowdmark default.

Group Work: Please note that you are permitted to work in a group of up to 3 students from your section. Papers with more than 3 people will not be marked. To make it clearer who you have worked with, please write their names on your Crowdmark paper and choose them in Crowdmark. You must do this before you upload your answers. If you use additional sources, acknowledge them in the given question. Failure to acknowledge your people/sources may result in an academic penalty.

Generative AI: Generative AI is not permitted in this course. Please see the outline for further information.

Computer Output: Please include R code in your assignment, as well as all relevant output (some examples where examples would be appropriate).

It is expected that you are answering these questions by hand unless otherwise requested in the question.

Question 1. The Liberal government is keeping track of average Canadian Province CO2 emissions (in megatons).  They first investigated this problem in 1990.  They would like to compare the average provincial CO2 emissions between 1990 and 2022. You may only use R for simple calculations.

Province

BC

Alb

Sask

Man

Ont

Que

NS

NB

PEI

NL

1990

51.1

177.2

49

18.2

157

79.1

14.8

16.2

1.6

9.5

2022

64.3

269.9

75.9

21.6

178

84.4

19.6

12.5

1.8

8.6

Perform. a test of hypothesis to determine whether or not average Provincial CO2 emissions are greater in 2022 than in 1990.

Question 2. The Riley Bay Company (RBC) has been around for centuries. As a result they have a lot of data. They have recorded their revenue, cost and profit (in millions of dollars) from the past 5 years in the data set RBC_profits.csv. You may only use R for simple calculations.

Part A. How many years should Charlie sample the profit to be accurate to a width of 5 million, 8 times out of 10. Part B. Charlie is really interested in the proportion of years where the profit is negative.  How many years should Charlie sample, in the worst case scenario, to be accurate to within 0.1, 19 times out of 20?

Question 3. Consider the model yi   = exp(μ) + Ri, Ri~N(0, σ 2), i  = 1, … , n.  Use Least Squares to estimate the parameters.

Question 4. Consider the following models.

xj  = μ + Rj, Rj~N(0, σ 2), j = 1, …, n

yij  = τ i  + s ij, s ij~N(0, σ 2), i=1,2; j=1,….,mi

zij  = wi  + Tij, Tij~N(0, σi2 ), i=1,2; j=1,….,ki

(all random variables are independent of one another)

Determine the expectation and variance of e ach of the following.

3/1 yij  + 2

̂(μ) + y1j y2j

w2w2  + ̂(w)2

̃(w)2̃(τ)1                             [Just the expectation for this object]

Question 5. Let U~U(0, 1) be a random variables.  Determine each of the following:

Part A. Cov(U, 1 − U)

Part B. Cov (3/U, U − 1)

Question 6. The Riley’Rama Car Washis trying to reduce it’swater usage; and still keep the cars clean.  They believe they have two processes which ensure that the cars are equally clean.  Their response is water usage.  To do so they have 13 cars drive through the Riley’Rama under process 1, and 7 cars drive through under process 2.  They compare the average water used (in gallons) in the two processes.

Process 1 = c(75, 72, 71, 74, 67, 68, 78, 68, 66, 70, 74, 71, 76)

Process 2 = c(69, 62, 65, 68, 56,55, 64)

Build a 95% confidence interval to compare the average water usage of the two processes.  Recall that by default, unless stated otherwise, you should assume that the variances are different.  Which process should they use if their only goal is to reduce water consumption? You may only use R for simple calculations.

Question 7. Ravi and Xinyue are two sales employees in a vehicle lot.  They are competing as to who can sell the most

vehicles in the year.  So far they have information on the first 4 days of their competition.  They decide to use the model, yij  = μ + τ i  + Rij, Rij~N(0, σ 2), indep, i = 1,2;j = 1, … ,4; with constraint iτ i   = 0.  The Data and Code are below.      One in this case is for Ravi, and two is for Xinyue.

TRT = as.factor(c(1,1,1,1,2,2,2,2)) Y = c(5,6,3,3,5,1,X,Y)

options(contrasts = c('contr.sum','contr.poly')) summary(lm(Y~TRT))

Call:

lm(formula = Y ~ TRT)

Residuals:

Min     1Q Median     3Q    Max

-2.25  -1.25  -0.25   1.75   1.75

Coefficients:

Estimate Std. Error

(Intercept)   3.7500     0.6374

TRT1 XXX 0.6374

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ . ’ 0.1 ‘ ’ 1

Determine each of the following:

Part A. How many degrees of freedom should be used for CIs and HTs using this model?

Part B. What is the value of ̂(σ) for this model?

Part C. What is the value of̂(τ)1,̂(τ)2  = −0.5 for this model?

Part D. Give the smallest possible range (using the reference table) for the pvalue of the test Ha:  τ2  ≠ 0.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图