代做COMP9517: Computer Vision 2024 T3 Lab 2代做Python语言

COMP9517: Computer Vision

2024 T3 Lab 2 Specification

Maximum Marks Achievable: 2.5

This lab is worth 2.5% of the total course marks.

Objective: This lab revisits important concepts covered in the Week 3 lectures and aims to make you familiar with implementing specific algorithms.

Software: You are required to use OpenCV 3+ with Python 3+ and submit your code as a Jupyter notebook (see coding and submission requirements below). In the tutor consultation session this week, you can ask any questions you may have about this lab.

Materials: Pictures to be used in this lab are to be captured by yourself. Use your smartphone or digital camera to take the pictures required for the tasks below.

Submission: All code and requested results are assessable after the lab. Submit your source code as a Jupyter notebook (.ipynb file) that includes all output and answers to all questions (see coding requirements at the end of this document) by the above deadline. The submission link will be announced in due time.

Preparation: Choose any scene with clear structures (for example buildings) on campus or in your neighbourhood and take two pictures of it. The two pictures should have some overlap but neither of them should capture the whole scene. Below is an example of two such pictures, but please use your own for this lab. To save disk space, feel free to downscale the pictures (for example to 1,000–1,500 pixels wide) before carrying out the tasks below.

Example Picture 1                                                          Example Picture 2

Task 1 (0.5 mark)

Compute the SIFT features of the two pictures.

a)   Extract the SIFT features with default parameters and show the keypoints on the pictures. Hint: Use existing library functions for this (see suggestions at the end).

b)   To achieve better visualization of the keypoints, reduce their number to include only the ~20 most prominent ones. Hint: Vary the parameter contrastThreshold or nfeatures.

Show the results obtained in a) and b) in your Jupyter notebook (like the examples below) and include a brief description of the approach you used for b).

Task 2 (1 mark)

Recompute the SIFT features for the following processed versions of the two pictures:

a)   Scaled with a factor of 120 percent.

b)   Rotated clockwise by 60 degrees.

c)   Contaminated with salt and pepper noise. Hint: The scikit-image library has a utility function to add random noise of various types to images.

For each of these three versions of the  pictures,  extract the SIFT features  and show the keypoints on the processed pictures using the same parameter settings as for Task 1 (for the reduced number of keypoints).

Inspect the keypoints visually: Are the keypoints of the processed pictures roughly the same as those of the originals? What does this say about the robustness of SIFT in each case? To which of the three types of processing is SIFT most robust?

Show the results obtained for each of a), b), and c) in your Jupyter notebook and include your answers to the questions stated above.

Task 3 (1 mark)

Match and stitch the two pictures to create a single composite picture.

a)   Find the keypoint correspondences between the pictures and draw them. Hints: First, use OpenCV’s brute-force descriptor matcher (BFMatcher) to find matching keypoints. Then, use its kNN-based matching method (knnMatch) to extract the k nearest neighbours for each query keypoint. Use your own criteria based on the keypoint distances to select the best keypoint correspondences between the two pictures.

b)   Use the RANSAC algorithm to robustly estimate the mapping of one of the two pictures to the other based on the selected best keypoint correspondences and then apply the mapping and show the final stitched picture. Hints: There are existing OpenCV functions to find the mapping (findHomography) between sets of points using various methods, as well as functions to apply this mapping to sets of points (perspectiveTransform) and warp pictures accordingly (warpPerspective). You may need to crop the result to get a nicely stitched picture. The red line shown in the example below indicates the stitching boundary, but it is not necessary to draw the boundary in your result.

Coding Requirements and Suggestions

Make sure that in your Jupyter notebook, the input pictures are readable from the location specified as an argument, and all outputs and other requested results are displayed in the notebook environment. All cells in your notebook should have been executed so that the tutor/marker does not have to execute the notebook again to see the results.

Check the OpenCV documentation for various built-in functions to find SIFT features, draw keypoints, and match keypoints in images, as well as apply RANSAC to estimate a mapping function. You should understand how the algorithms work, what parameters you can set in these built-in functions, and how these parameters affect the output. For your reference, below are links to relevant OpenCV functions.

2D Features Framework

https://docs.opencv.org/4.6.0/da/d9b/group__features2d.html

Drawing Functions of Keypoints and Matches

https://docs.opencv.org/4.6.0/d4/d5d/group__features2d__draw.html

Descriptor Matchers

https://docs.opencv.org/4.6.0/d8/d9b/group__features2d__match.html

OpenCV SIFT Class Reference

https://docs.opencv.org/4.6.0/d7/d60/classcv_1_1SIFT.html

See the following page to understand image features and various feature detectors:

https://docs.opencv.org/4.6.0/db/d27/tutorial_py_table_of_contents_feature2d.html

Also, see the following example of computing SIFT features and showing the keypoints:

https://docs.opencv.org/4.6.0/da/df5/tutorial_py_sift_intro.html

And finally see this page for an example of feature matching:

https://docs.opencv.org/4.6.0/dc/dc3/tutorial_py_matcher.html

Reference: D.   G.    Lowe.    Distinctive    image   features    from   scale-invariant    keypoints. International  Journal  of  Computer  Vision,  vol.   60,   no.  2,  pp.  91-110,  November  2004.

https://doi.org/10.1023/B:VISI.0000029664.99615.94


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图