代做data编程、代写c++语言程序
Project 3: Introduction to X86-64 Assembly Programming
Grading Form
Goal
In this project you will write programs in x86-64 assembly language. It is important that you learn the x86-64 assembly language since it is the one you use every day in your PC, Mac, or in data.cs.purdue.edu. Also, this is a 64 bit architecture that uses 8 byte addresses and variable-length assembly instructions.
X86-64 Introduction
The X86-64 assembly language was created by AMD and then adopted by Intel. The X86-64 assembly language extends the x86 32 bit architecture to 64 bits. X86-64 is a superset of x86-32. It provides an incremental evolution to migrate from x86-32 bits to x86-64 bits and it is backward compatible.
Here is a good reference that can help you in programming with the X86-64. Section 3.2 on page 5 gives an example of a C program translated to X86-64, and Figure 2 on page 7 gives an explanation of each register (which is also shown below).
x86-64 tutorial
Also see the x86-64 assembly notes section in http://www.cs.purdue.edu/homes/cs250

The X86-64 architecture uses the following register assignment:

You will find many similarities with the ARM architecture. For instance, there are also 16 registers available to the user, though not all are typically used as general purpose registers. As opposed to using r0, r1, and so on, some registers are named due to backwards-compatibility: instead of receiving/passing arguments via r0, r1, r2, and r3, arguments are received and passed via %rdi, %rsi, %rdx, and %rcx. Some registers are callee saved and can be used as local variables. In addition, %rax is used to return values in functions, similar to how you would load r0 in ARM assembly before returning.
One of the main differences is that in the x86-64 architecture is that the order of the arguments is different than in the ARM. For example, in the instruction:
movq $3, %rsi
The first argument, numerical constant $3, is assigned into the register %rsi so the target register is on the right. In ARM, this would be equivalent to:
mov r2 #3
The x86-64 architecture is backward compatible with x86-32, and as such the 4 least significant bytes of registers %rax, %rbx, %rcx, %dx are compatible with the old x86-32 bit registers %eax, %ebx, %ecx, and %edx. We will only write programs using the 64-bit registers, so most of the instructions will end with "q" which means that they will work with 8 byte words.
The addressing modes in the x86-64 are the following:
 Immediate Value
movq $0x501208,%rdi
Direct Register Reference
movq %rax,%rdi
Indirect through a register
movq %rsi,(%rdi )
Direct Memory Reference
movq 0x501208,%rdi
#Put in register %rdi the constant 0x501208
#Move the contents of register %rax to %rdi
#Store the value in %rsi in the address contained in %rdi
#Fetch the contents in memory at address 0x501308 and store it in %rdi
Task 1: Your first X86-64 Assembly Program
Login to data.cs.purdue.edu and create a directory project-3-src where you will put all your code:
Type:
You will do all your work in data.cs.purdue.edu and in the directory ~/cs250/project-3-src.
Type the following program sqr.s that squares a number read from the terminal, then prints the result. Important note: it is easy to miss that your “main'' function will be declared with .globl in x86 as opposed to .global in ARM.
cd
mkdir -p cs250/project-3-src
cd cs250/project-3-src

# Define global variable a in data section
.data
.comm a,8
.text
format1:
.string "a="
format2:
.string "%ld"
format3:
.string "a^2 is %ld\n"
.globl main
main:
pushq %rbp
movq %rsp, %rbp
# long a;
movq $format1, %rdi #
movq $0, %rax #
call printf #
#
movq $format2, %rdi #
movq $a, %rsi #
movq $0, %rax #
call scanf #
#
movq $format3, %rdi #
movq $a, %rsi #
movq (%rsi),%rsi #
imulq %rsi,%rsi #
movq $0, %rax
call printf
leave ret
printf("a=");
similar to `bl printf` in ARM
scanf("%ld",&a);
printf("a^2 is %ld",a*a);
# pops the frame pointer #}
# main()
#
# Save frame pointer
#
#
# #
See what the program does line by line. You will find it very similar to ARM, such as how the argument registers are used (i.e. %rdi instead of r0, %rsi instead of r1 - library functions such as printf still need a format string and an address to put the value it scans in).
Then assemble it using the following command.
gcc -static -o sqr sqr.s

./sqr
The -static flag passed to gcc is used to make the .text section has a predefined loading address instead of being able to load it at random text addresses. The -static flags tells the compiler not to generate position independent code or PIC that is the default. One of the new security features of Linux is to load the program at random memory addresses every time you run it to make programs more difficult to hack. The flag -static will disable this feature in the assembly programs you write to make assembly programming easier.
Question 1. Write the code above into the file sqr.s, compile it and run it. Question 2. Explain what the following instructions do:
pushq %rbp # Save frame pointer movq %rsp, %rbp
......
leave
ret
Question 3.Write a program avg.s in assembly language that reads n numbers, then computes the sum and the average. The numbers are long integer of 8 bytes and the average will be truncated. Assume that the first number you read in will be the value of n, i.e. there will be n more inputs that follow.
./s
n? 5
3
6
8
1
5 SUM=23 AVG=4
Hint: Use the instruction "idivq" to compute the average. It might be helpful to look into commonly used X86-64 opcodes, as it may have some useful functionalities that ARM does not.
Task 2: Using Arrays in X86-64
The following C function computes the maximum of an array
// Finds the max value in an array
long maxarray(long n, long *a) {
long i=0;

long max = a[0];
while (i if (max < a[i]) {
max = a[i]; }
i++; }
return max; }
The equivalent code in X86-64 assembly language is given here:
# maxarray.s
.text
.globl maxarray
maxarray:
pushq %rbp
movq %rsp, %rbp #
#
movq $0,%rdx #
movq (%rsi),%rax #
#
%rdx,%rdi #
jle afterw #
#
movq %rdx,%rcx #
imulq $8,%rcx #
while: cmpq
addq
cmpq jge movq
afterif: addq
jmp while
afterw: leave
ret
i=0 ;
max = a[0]
while (i0)
//*(long*)((8*i+(char*)a)
long *tmp = &a[i];
if (max < *tmp) { // (max-*tmp<0)
max = *tmp
# // Finds the max value in an array
#
# long maxarray(long n, long *a) # //n=%rdi a=%rsi
# //i=%rdx max=%rax #
%rsi,%rcx #
#
(%rcx),%rax #
afterif #
(%rcx),%rax #
$1,%rdx
#}
# i++ ; #
#}
#
#}
# Save frame pointer
The C code maxarray.c that calls this function is the following:
// maxarray.c:
#include
long a[] = {4, 6, 3, 7, 9 };

extern long maxarray(long, long*);
int main() {
printf("maxarray(5,a)=%ld\n", maxarray(5,a));
}
To compile this programs type:
gcc -static -o maxarray maxarray.c maxarray.s
Question 4. Type the programs maxarray.s and maxarray.c, then test them. Also answer, what do the following instructions from the above code snippet do? Explain.
movq %rdx,%rcx
imulq $8,%rcx
addq %rsi,%rcx
Task 3: Implementing Bubble Sort in X86-64
Question 5. Implement a function bubblesort(long ascending, long n, long * a) in X86-64 in a file bubble.s that will sort an array of integers using bubblesort.
Here is the code in C that implements bubblesort. You have to implement it in X86-64 assembly language in the file bubble.s
void bubble_sort(long ascending, long n, long * a) { for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
long swap = 0;
if (ascending) {
if (array[j+1] < array[j]) {
swap = 1;
} else {
if (array[j+1] > array[j]) {
swap = 1
} }
if (swap) {
long temp = array[j];
array[j] = array[j+1];
array[j+1] = temp;
}

} }
Then call it from the file bubble.c
// bubble.c:
#include
long a[] = {6, 7, 2, 3, 1, 9, 4, 5, 0, -9, 8};
long n = (sizeof(a)/sizeof(long));
extern void bubblesort(long ascending, long n, long * a);
void printArray(long n, long * a) {
for (int i = 0; i < n; i++) {
printf("%ld ", a[i]);
}
printf("\n");
}
int main(int argc, char ** argv)
{
printf("Before Ascending:\n");printArray(n,a);
bubblesort(1, n, a); // notice how we do not return anything here...
printf("After Ascending:\n");printArray(n,a);
printf("Before Descending:\n");printArray(n,a);
bubblesort(0, n, a); // notice how we do not return anything here...
printf("After Descending:\n");printArray(n,a);
}
To compile the program type
gcc -static -o bubble bubble.c bubble.s
Question 6. Complete the following Makefile that will make all the executables in this lab.
You may have used Makefiles in past lab courses without knowing it! Create a file named “Makefile” in your lab directory, and put the following contents in it - Bash knows the keyword “make” and will search for a Makefile, attempting to compile the “goal:” line it finds. This is easier than compiling each individual file when working on large projects, and will not compile a file if it has not been edited since the last time it was compiled (you will learn more about this in CS252).

# TODO: Modify the below to compile bubble as well
goal: sqr maxarray
sqr: sqr.s
gcc -static -o sqr sqr.s
maxarray: maxarray.s maxarray.c
gcc -static -o maxarray maxarray.c maxarray.s
clean:
rm -f sqr maxarray
To use the Makefile, type:
make clean
make
Turnin
Follow these instructions to turnin project-3:
Make sure that your programs are built by typing "make". Make sure it builds and runs in data.cs.purdue.edu etc.
If you have not created a project-3-src create it. Type:
cd
cd cs250
mkdir project-3-src
Copy your files into project-3-src/ and cd to the parent directory of
project-3-src. Then type:
turnin -c cs250 -p project-3 project-3-src
Then, you may type "turnin -c cs250 -p project-3 -v" to make sure you have submitted the correct files - remember the -v flag, or it will ask you if you wish to resubmit your lab again.
You will show your programs to the lab instructor and TAs during lab time next week.
Rubric:
Q1. __/10 points
Q2. __/10 points
Q3. __/30 points
Q4. __/10 points

Q5. __/30 points
Q6. __/10 points
Project 3 Grading Form
Question
Max
Current
Question 1. Write the code above into the file sqr.s, compile it and run it.
10
Question 2. Explain what the following instructions do:
pushq %rbp # Save frame pointer
movq %rsp, %rbp ......
leave
ret
10
Question 3.Write a program avg.s
30
Question 4. Type the programs maxarray.s and maxarray.c
10
Question 5. Implement a function bubblesort(long ascending, long n, long * a)
30
Question 6. Complete the following Makefile
10
Total: Max 100

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图