代写ENGN4536/6536 Wireless Communications AI Mini Project Report: Deep Learning for PAPR Reduction in

ENGN4536/6536 Wireless Communications

AI Mini Project Report: Deep Learning for PAPR Reduction in OFDM

Preliminary: Write a brief commentary on the libraries used in this project (5 marks).

1. What is the functionality of numpy library?

2. What is the functionality of keras library? Particularly, what is the functionality of the Adam optimiser?

3. What is the functionality of EarlyStopping?

4. What is the functionality of tensorflow_probability?

5. What is the functionality of matplotlib.pyplot?

Please write a very brief description of the functionality of each library used in this project.

Commentary: (roughly 50-100 words)

Task 1: Define system parameters and generate dataset (5 marks: 2.5 for commentary + 2.5 for source code and output).

Why do we include the following system parameters in the simulation? Below are three exemplary answers.

1. Fading parameter: Fading parameter is used to generate Rayleigh fading realisations.

2. Modulation order: Modulation order is used to identify the number of bits per symbol transmitted in one orthogonal subcarrier in OFDM systems.

3. Learning rate: Learning rate sets the step size of the minimisation problem.

Commentary: (roughly 50-100 words)

1. SNR:

2. Number of subcarriers:

3. Weight parameter:

4. Batchsize:

5. Epoch:

Task 2: Define a constellation mapper model (15 marks: 7.5 for commentary + 7.5 for source code and output).

1. What is the functionality of the Batch Normalization layer?

2. What is the shape of the fifth Dense layer? Why is the ‘tanh’ activation function appropriate for this layer?

3. What is size of the output of the IFFT operation, i.e. how many symbols are generated by the IFFT for being transmitted at one subcarrier?

Commentary: (roughly 100 words)

Task 3: Channel modelling and equalisation (15 marks: 7.5 for commentary + 7.5 for source code).

1. How is the noise generated, e.g. based on the average symbol energy (or average symbol power) and the given SNR value?

2. How is the fading gain generated, e.g. which library is used?

Commentary: (roughly 100 words)

Task 4: Define a constellation demapper model (10 marks: 5 for commentary + 5 for source code and output).

1. What is the shape of the corrupted bit sequence?

2. What is the shape of the final Dense layer?

3. Why is the ‘sigmoid’ activation function appropriate for the final Dense layer?

Commentary: (roughly 100 words)

Task 5: Define and compile the autoencoder model. Test trained autoencoder model’s performance (30 marks: 15 for commentary + 15 for source code and output).

1. Why is the Adam optimiser chosen for the autoencoder?

2. Why is the symbol_papr function appropriate for the constellation mapper?

3. Why is the binary cross entropy function appropriate for the constellation demapper?

4. What is the weight of the loss function for the constellation mapper? Please state the appropriate numerical value if weight is fixed or the parameter if weight is variable.

5. What is the weight of the loss function for the constellation demapper? Please state the appropriate numerical value if weight is fixed or the parameter if weight is variable.

6. What are the two outputs produced by the autoencoder?

7. What is the input to the trained autoencoder?

8. Please write the key steps to compute the average PAPR of OFDM symbols produced by the autoencoder.

Commentary: (roughly 150-200 words)

Task 6: Compute classical OFDM PAPR performance. Plot autoencoder vs classical OFDM PAPR

1. Please write the key steps to compute the average PAPR of OFDM symbols in classical OFDM systems.

2. Please write the key steps to compute the probability values for an OFDM scheme (e.g. the autoencoder-based OFDM scheme and the classical OFDM scheme).

performance (20 marks: 10 for commentary + 10 for source code and output).

Commentary: (roughly 100 words)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图