MATH3075代写、Python/Java语言编程代做
ASSIGNMENT 1
MATH3075 Financial Derivatives (Mainstream)
Due by 11:59 p.m. on Sunday, 8 September 2024
1. [12 marks] Single-period multi-state model. Consider a single-period market
model M = (B, S) on a finite sample space Ω = {ω1, ω2, ω3}. We assume that the
money market account B equals B0 = 1 and B1 = 4 and the stock price S = (S0, S1)
satisfies S0 = 2.5 and S1 = (18, 10, 2). The real-world probability P is such that
P(ωi) = pi > 0 for i = 1, 2, 3.
(a) Find the class M of all martingale measures for the model M. Is the market
model M arbitrage-free? Is this market model complete?
(b) Find the replicating strategy (ϕ) for the contingent claim X = (5, 1, −3)
and compute the arbitrage price π0(X) at time 0 through replication.
(c) Compute the arbitrage price π0(X) using the risk-neutral valuation formula
with an arbitrary martingale measure Q from M.
(d) Show directly that the contingent claim Y = (Y (ω1), Y (ω2), Y (ω3)) = (10, 8, −2)
is not attainable, that is, no replicating strategy for Y exists in M.
(e) Find the range of arbitrage prices for Y using the class M of all martingale
measures for the model M.
(f) Suppose that you have sold the claim Y for the price of 3 units of cash. Show
that you may find a portfolio (x, ϕ) with the initial wealth x = 3 such that
V1(x, ϕ) > Y , that is, V1(x, ϕ)(ωi) > Y (ωi) for i = 1, 2, 3.
2. [8 marks] Static hedging with options. Consider a parametrised family of
European contingent claims with the payoff X(L) at time T given by the following
expression
X(L) = min
2|K − ST | + K − ST , L

where a real number K > 0 is fixed and L is an arbitrary real number such that
L ≥ 0.
(a) For any fixed L ≥ 0, sketch the profile of the payoff X(L) as a function of ST ≥ 0
and find a decomposition of X(L) in terms of the payoffs of standard call and
put options with maturity date T (do not use a constant payoff). Notice that a
decomposition of X(L) may depend on the value of the parameter L.
(b) Assume that call and put options are traded at time 0 at finite prices. For
each value of L ≥ 0, find a representation of the arbitrage price π0(X(L)) of
the claim X(L) at time t = 0 in terms of prices of call and put options at time
0 using the decompositions from part (a).
(c) Consider a complete arbitrage-free market model M = (B, S) defined on some
finite state space Ω. Show that the arbitrage price of X(L) at time t = 0 is a
monotone function of the variable L ≥ 0 and find the limits limL→3K π0(X(L)),
limL→∞ π0(X(L)) and limL→0 π0(X(L)) using the representations from part (b).
(d) For any L > 0, examine the sign of an arbitrage price of the claim X(L) in any
(not necessarily complete) arbitrage-free market model M = (B, S) defined on
some finite state space Ω. Justify your answer.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图