代做MAT315H1S: Introduc3on to Number Theory Fall 2024代写数据结构语言

MAT315H1S: Introduc3on to Number Theory

Fall 2024

I.                    Course Overview

Course DescripFon:

IntroducFon to Number Theory

Elementary topics in number theory: arithmeIc funcIons; polynomials over the residue classes modulo m, characters on the residue classes modulo m; quadraIc reciprocity law, representaIon of numbers as sums of squares.

Prerequisites

(MAT223H1/MATA23H3/MAT223H5/MAT240H1/MAT240H5,MAT235Y1/MAT235Y5/ (MAT232H5,MAT236H5)/ (MATB41H3,MATB42H3)/MAT237Y1/

(MATB41H3,MATB42H3,MATB43H3)/MAT237Y5,MAT246H1/CSC236H1/CSC240H1)/MAT157Y1 /MAT157Y5/ (MAT157H5,MAT159H5)/MAT247H1/MAT247H5

Course ObjecFves

This course will provide a basic knowledge of elementary number theory, a subject that is important in many areas of mathemaIcs, computer science, cryptography and security, and elsewhere.

We will cover material from Chapters 1—7 of the text by Jones and Jones and will pick up some addiIonal material to be covered in handouts.

The main topics are the following:

1. divisors, Euclidean algorithm, gcd(a,b), lcm(a,b).

2. primes, factorizaIon, Prime Number Theorem (statement), Fermat and Mersenne primes,

3. modular arithmeIc, congruences, Chinese Remainder Theorem,

4. compuIng powers and roots mod m, intro to RSA

4. arithmeIc mod p for p a prime, Fermat's lidle Theorem, Wilson's Theorem, primality tesIng, pseudoprimes and Carmichael numbers

5. (\Z/n\Z)^x, the Euler \phi funcIon, \phi(n).

6. structure of (\Z/p^e\Z)^x, primiIve roots

7. quadraIc congruences, quadraIc reciprocity, Legendre symbol

AddiIonal topics as Ime permits selected from:

-- Zeckendorf’s Theorem

-- the Riemann zeta funcIon, Euler product, Riemann hypothesis,

-- irraIonal and transcendental numbers, Liouville numbers

-- the abc conjecture.

Required Textbook:

G. Jones and J. M. Jones, Elementary Number Theory, Springer, ISBN-3540761977 (An ebook version of this text is available.)

AddiIonal references:

(These books are not required but are nice sources of addiIonal material and perspecIves.)

J. Silverman, A Friendly IntroducIon to Number Theory, Pearson, 4th ed., 2012, ISBN-13:978- 0321816191.

A.Granville, Number Theory Revealed: An IntroducIon, Amer. Math. Soc., 2019.

K. Rosen, Elementary Number Theory, 6th ed., Addison Wesley, ISBN-13:978-0321500318.

How this course is organized:

Lectures: Monday 9-10, Tuesday 9-11, room MP 202

Tutorials: Each student should be enrolled in a tutorial secIon meeIng 1 hour each week. These are scheduled for Wednesday 10-11 and 12-1, Friday 9-10

First week of classes: The first lecture will be on Tuesday, September 3th, 9-11. ***Tutorials will meet at their regular Fmes the first week.***

Here are the details, including secIon numbers and locaIons:

MAT315H                    Introduction to Number                                                               WE:10:00-11:00

1                     F            Theory                                      TUT       101                                  (UC 52)

MAT315H                    Introduction to Number                                                               WE:12:00-13:00

1                     F            Theory                                       TUT        201                                  (OI 5250)

MAT315H                    Introduction to Number                                                                FR:09:00-10:00

1                     F            Theory                                       TUT        301                                  (WO 25)

Homework: There will be weekly homework. These assignments will be posted aner the Monday lecture and will be collected on Crowdmark before the start of lecture the following Tuesday (i.e.,  due by 9:00am). Please note: No late homework will be accepted.

There will be no homework due the days of the Midterms.

Midterms: There will be two Midterm Exams,

Tuesday, October 8, 7—9pm

Tuesday, November 19, 7—9pm

The rooms will be announced later in the term.

II.               EvaluaFon/ Grading Scheme

Mark Breakdown:

Homework                      15%

Midterm Exam 1            25%

Midterm Exam 2            25%

Final Exam                      35%

Homework Assignments:

There will be 9 homework assignments, of which the two with lowest grades will be dropped.

Midterm Exams:

Dates and Imes are indicated above.

Final Assessment:

The final assessment will be held during the final assessment period in December 2024 and will be scheduled by the registrar. InformaIon about the format will be provided during the Fall semester.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图