代写PHL245 Shortened truth tables代写C/C++程序

Shortened truth tables

PHL245

We have been using the method of truth tables to determine various semantic properties of SL constructions. You might have noticed that some of these properties require us to check every row of a truth table, whereas other properties can be determined by just one row.

To determine that an argument is valid, for example, we have to check every row in the table to ensure that there is no row in which the premises are all true and the conclusion is false. But if the argu-ment is invalid, to determine this it suffices to find just one coun-terexample row: a row in which the premises are all true and the conclusion is false.

So, it would be nice if we could find a way to write just one row that shows that something has one of these properties, without hav-ing to write out a full truth table. We can do this by completing a shortened truth table.

Shortened truth table for an invalid argument

Given an invalid argument in SL, we know that the full truth table (if we wrote it out) has at least one row in which the premises are all true and the conclusion is false. So we begin by filling in a ‘T’ under the main connective of each premise, and an ‘F’ under the main connective of the conclusion. From there, we “work backwards” to figure out a TVA that gives these truth values for the premises and conclusion.

Let’s work through an example using this invalid argument:

Since this argument contains five distinct sentence letters, its full truth table is 25 = 32 rows long. This would be tedious to complete, so it’s a good thing that we have the shortened truth table method available! We begin by filling in the desired truth values under the main connective of each sentence:

Now, our goal is to fill in the values under the sentence letters in a way that fits with the values we have already filled in under the connectives. Importantly, every occurrence of the same sentence letter must have the same truth value under it.

In this example, we should begin by working on the conclusion. Here’s why: There are three different ways for a conditional to be true (first premise), and three different ways for a disjunction to be true (second premise), but there is only one way for a conditional to be false (conclusion). Since the conclusion is a false conditional, we have to fill in a ‘T’ for its antecedent and an ‘F’ for its consequent:

And, there is also only one way for the conclusion’s antecedent (a conjunction) to be true: when both conjuncts are true. So we know that the TVA we’re looking for is one on which P, Q are true and R is false. We then copy these truth values for the sentence letters under each of their occurrences in the argument.

Now, looking at the first premise, we see that its antecedent is true on this TVA, so its consequent must also be true for this conditional to be true. The consequent is a disjunction and one of its disjuncts R is false, so the other disjunct S has to be true:

Looking now at the second premise, it is a disjunction where one of the disjuncts is a conjunction where both conjuncts Q, P are true. So, the conjunction Q ∧ P is true. This is enough to ensure that the disjunction T ∨ (Q ∧ P) is true (as desired), so T can be either truth value. We need to assign every sentence letter a truth value, so let’s arbitrarily assign truth to T (but assigning F to T would work here too).

We are now done. The above shortened truth table shows that the argument is invalid, by showing that there is a TVA on which the premises are all true and the conclusion is false.

Other semantic properties

We have seen that a shortened truth table can show that an argument is invalid. Shortened truth tables can also be used to show that a set of sentences is consistent, that a sentence is not a tautology, that a sentence is not a contradiction, and that two sentences are not logically equivalent.

The definitions of these properties are our guide to setting our desired values for the sentences in the set or pair. Once we set our desired values under the main connective(s), the process for finding a TVA that gives the desired values is as described above.  Using the guidelines below, try and complete the shortened truth table problems on Assignment 3.

Shortened truth table for a consistent set of sentences

Recall: A set of sentences of SL is consistent if there is at least one TVA on which all sentences in the set are true.

To show that a set of sentences is consistent, we set all the sen-tences in the set to be true by filling in a ‘T’ under the main connec-tive of each sentence.

Shortened truth table for a non-tautology

Recall: A sentence of SL is not a tautology if there is at least one TVA on which the sentence is false.

To show that a sentence is not a tautology, we set the sentence to be false by filling in an ‘F’ under its main connective.

Shortened truth table for a non-contradiction

Recall: A sentence of SL is not a contradiction if there is at least one TVA on which the sentence is true.

To show that a sentence is not a contradiction, we set the sentence to be true by filling in a ‘T’ under its main connective.

Shortened truth table for two sentences that are not logically equivalent

Recall: Two sentences of SL are not logically equivalent if there is at least one TVA on which they have different truth values.

To show that two sentences of SL are not logically equivalent, we set one of the sentences to be true (by filling in a ‘T’ under its main connective) and the other sentence to be false (by filling in an ‘F’ under its main connective).





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图