代做PHAS0038: Electromagnetic Theory Problem Sheet 1帮做Python语言

PHAS0038: Electromagnetic Theory

Problem Sheet 1

Complete the following three questions - show and justify your full working. Submit your work by the end of Tuesday, Nov 1, 2022. You should preferably submit a file containing a digital scan of your legible written work, or a word-processed document, using the upload link on the Moodle page. (Please submit your work in a common format such as .doc, .docx, .pdf or .jpeg)

This problem sheet is for private use only, and should not be re-distributed.

Question 1

Consider an infinitely large pair of thin conducting plates which both lie parallel to the xy plane in a Cartesian coordinate frame. The two plates are separated vertically by a distance d, measured parallel to the z axis (see diagram below). The upper and lower plates carry uniform. surface densities of free charge of −σ and σ, respectively (with σ > 0). The space outside and between the plates is vacuum.

Figure 1: Part of system with two infinitely large, parallel, charged plates.

(a) Show that the electric displacement between the plates is given by D = σzˆ (where zˆ is a unit vector in the positive z direction). (You may assume zero electric field in the space which is not between the plates).         [4 marks]

(b) The space between the plates is now filled with a LIH (linear, isotropic, homogeneous) dielectric material of relative permittivity ϵr (where ϵr > 1). The free charge distribution on the plates does not change. Show that the surface density of polarization (bound) charge which now accumulates on the upper and lower faces of the dielectric is given by ±σ (ϵr − 1)/ϵr. As part of your answer, indicate which algebraic sign in this expression corresponds with the upper plate and lower plate.             [6]

(Question 1 total marks: 10)

Question 2

A particle detector onboard a spacecraft can be represented as a rectangular box whose eight ver-tices are situated at Cartesian coordinates (x, y, z) = (0, 0, −D),(L, 0, −D),(0, W, −D),(L, W, −D), (0, 0, D),(L, 0, D),(0, W, D),(L, W, D) where L, W and 2D are the edge lengths of the box along the x, y and z directions. The electric field inside the detector is uniform, and given by E0 zˆ where E0 is a positive constant.

Ions from the space environment can enter a small aperture on one side of the container, which is situated at coordinates (0, W/2, 0).

Consider an ion of positive charge q and mass m which enters the aperture with initial velocity u0 ˆx at time t = 0. The only force acting on the ion after this time is due to the electric field inside the detector.

(a) Using the information above, show that the equations of motion of the ion (which has general velocity u(t)ˆx + v(t)zˆ, a vector function of time) are:

u ′ (t) = 0,

v ′ (t) = q E0/m.                          [2]

(b) The motion of this ion stops inside the detector when it collides with one of the walls at the point (x, y, z) = (xf , W/2, D) where 0 < xf < L. Show that the ion’s initial kinetic energy, at time t = 0, is given by [10]

(Question 2 total marks: 12)

Question 3

The planet Jupiter is surrounded by a thin, partial disc of plasma which carries electric current. In a cylindrical coordinate system with the centre of Jupiter at the origin (see diagram below), the current disc lies in the plane z = 0, and extends between cylindrical radial distances a (inner edge) and b (outer edge).

Figure 2: View from above Jupiter’s magnetic equator. Current disc extends between radii a and b, and carries current which is locally azimuthally directed.

The surface current density at any point in the disc is given by where I0 is a positive constant, R is cylindrical radial distance, and ˆϕ is a unit vector in the local azimuthal direction. jS has units of azimuthal current per unit radial length, so that the azimuthal current flowing across a small increment δR, at radial distance R, is (I0/R) δR.

(a) Consider an observer on the positive z axis, situated at a distance z0 from the origin (Jupiter’s centre). Use the Biot-Savart Law to show that the contribution to the z component of the magnetic field at the observer’s position, due to a small surface element R δR δϕ of the disc, is given by:

[9]

(b) Explain why the total magnetic field at the observer’s position, due to all of the disc, is directed along the z axis.          [2]

(c) Using the results from (a) and (b), show that the total magnetic field at the observer’s position is:

[7]

(Question 3 total marks: 18)






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图