代做ETC3430 / ETC5343 Financial Mathematics under Uncertainty Semester One 2022 Final Examination代做Pyt

Semester One 2022

Final Examination

Unit Code:                 ETC3430 / ETC5343

Unit Title:                  Financial Mathematics under Uncertainty

Exam Duration:        2 hours 40 minutes (includes reading, downloading, and uploading time)

Format:                      This is an individual assessment. This is a closed book exam.

No. of Questions:      Answer all SEVEN questions. The total mark is 60.

Working:                   Show all your steps clearly. Start each question on a new page. Label each piece of paper with your Student ID.

Formulae & Tables: Formulae sheet and statistical tables are provided.

Calculator:                Any calculator is permitted.

Submission:               Your submission must occur within 2 hours and 40 minutes of the

official commencement of this assessment task (Australian Eastern Standard Time). Upload photographs of your answer sheets.

Assessment:               This final exam contributes 60% to the total mark of the unit.

Question 1      [15 marks]

(a)       State one key property of a valid generator matrix for a Markov jump process.      [3 marks]

(b)       An insurance company has two old products which are no longer sold and for which there are only two policies still in force for each product. The transition rate at which an individual policy terminates is 0.2 and 0.3 per annum for each product respectively, and the policies are independent of each other.

(i)        Give the state space for the number of these two products still in force at a future point of time.   [4 marks]

(ii)      Draw a transition graph for the process for the number of policies in force.    [4 marks]

(iii)     Write down the generator matrix.    [4 marks]

Question 2      [10 marks]

An insurance company offers annual home insurance policies in partnership with a bank. The distribution deal involves taking part in the bank’s loyalty scheme called ‘1234’. Under ‘1234’, a customer gets a discount when buying or renewing the policy according to how many bank accounts they hold, as follows:

Number of Bank Accounts

Discount

1

0%

2

1%

3

15%

4 or more

25%

An analysis of the data suggests that the transition matrix for the number of bank accounts held at annual intervals is as follows:


Question 2      (continued)

(a)       A customer takes out a policy on 1st January 2018 at the 15% discount level. Calculate the probability that the customer remains at the 15% discount level on 1st January 2020. [2 marks]

(b)       A customer takes out a policy on 1st January 2018 at the 15% discount level. Calculate the probability that the customer remains at the 15% discount level up to and including 1st January 2020.   [2 marks]

(c)       Does this admit a limiting distribution? If yes, derive the answer.   [2 marks]

(d)       Does this admit a stationary distribution? If yes, derive the answer.   [2 marks]

(e)       What is the long-term average discount?   [2 marks]

Question 3      [5 marks]

For the following graphs of stochastic processes:

•          classify them into different categories (hint: time / state-space);

•          discuss their long-term behaviour.


Question 4      [8 marks]

A mortality investigation is conducted over a period of two and a half years. The population data below (t measured in years) are collected for lives aged 41, 42, and 43 next birthday. The observed number of deaths is 27 at age 41 nearest birthday and is 31 at age 42 nearest birthday. Use Trapezium approximation to estimate q41. Give your answer to 6 decimal places. Note that 

Age

t = 0

t = 1

t = 2

t = 2.5

41

3,400

3,500

3,300

3,400

42

3,100

3,200

3,200

3,100

43

3,000

2,900

3,000

2,900

Question 5      [10 marks]

Apply the chi square test, cumulative deviations test, and signs test to assess the adherence to data of the following information. A mathematical formula with two parameters is used in the graduation process. Give  specific  and  overall  comments  on the  adherence to  data  of the graduated rates. You may also supplement your analysis with a suitable mortality graph.

Age

Initial Exposed to Risk

Observed Number of Deaths

Graduated

Mortality Rate

51

5,062

63

0.011

52

5,444

83

0.012

53

4,706

62

0.013

54

4,560

109

0.014

55

3,968

115

0.017

56

4,411

128

0.020

Question 6      [6 marks]

In a small medical study, the observed number of months that each patient with liver disease survives until death (no asterisk) or leaving the study for other reasons (with asterisk) is recorded below. Use Kaplan-Meier estimation to find the distribution function of the survival time of a patient. Then use Greenwood’s formula to compute the variance of the Kaplan-Meier estimator of the distribution function at 10 months, and deduce the corresponding  90% confidence interval.

6, 17, 6*, 20, 18*, 16*, 3, 10

Question 7      [6 marks]

You are an actuarial analyst working in a life insurance company selling life and term annuities.

Your manager has heard about the Lee-Carter (LC) model and the Cairns-Blake-Dowd (CBD) model. She knows that you took some excellent actuarial courses back in Monash and now asks you to explore the use of these state-of-the-art mortality projection methods in pricing and reserving practices. Write a memo to your manager - explain the key rationales of the LC and CBD models, compare their major strengths and weaknesses, and suggest how they can be applied in the valuation of the products offered by your company.

 

 

 

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图