代做MA214 Algorithms and Data Structures Summer 2022 Exam代写Python编程

Summer 2022 Exam

MA214

Algorithms and Data Structures

Question 1

The longest increasing subsequence problem is defined as follows. Input: A sequence x0 , x1 , . . . , xn-1 of integers.

Output: A longest increasing subsequence: that is, a sequence of the form. xi0  < xi1  < · · · < xiL-1 , where 0 ≤ i0  < i1  < · · · < iL-1  ≤ n — 1 and L is as large as possible.

The following Python code claims to output the length of a longest increasing subsequence for the given input list. You will prove its correctness in this question.

1       de f   L IS(lst):

2                  if   len (lst)==0:

3                          return   0 4

5                  L  =   [0   for   i  in   range (0,   len (lst))]

6                  L[0]   =   1

7                  for   i  in   range (1,  len (lst)):

8                          for   j  in   range (0, i):

9                                      if  lst[j]   <  lst[i]   and  L[j]   >  L[i]:

10                                                L[i]   =  L[j]

11                       L[i]   +=   1 12

13               return   max (L)

(a)     Show that the inner for loop in lines 8–10 satisfies the following loop invariant:

At the start of an iteration, L[i] = max{ L[k]  j 0<=k<j,  lst[k]<lst[i] }.

Use this to draw a conclusion about L after the execution of the last iteration of the inner for loop for a fixed value of i. Here, you can assume that max ; = 0.

(b)     Formulate a loop invariant for the outer for loop in lines 7–11 and use your loop invariant, to- gether with part (a), to draw a conclusion about L at the termination of the loop.

(c)     Argue that the length of a longest increasing subsequence of the input sequence is computed correctly by the code above. What is the worst-case running time of the algorithm for a list of length n?

Question 2

(a)     We define a Search Algorithm as an algorithm that, given an integer value y and a sorted list lst of integers as input, determines an index i such that lst[i]  equals y, if such an i exists.  A Comparison Search is a Search Algorithm that does not have direct access to lst, but can only send queries of the form ‘y<lst[i]?’ or ‘y==lst[i]?’ to an oracle which answers (truthfully) in constant time.

Hence, each Comparison Search on a list of length n can be represented by a binary tree such that each non-leaf of this tree represents a query of the form described, and each leaf represents a possible output of the algorithm: either of the form ‘y==lst[i] ’ or ‘y is not present in lst’.

Show that any Comparison Search has running time Ω(log n), where n is the length of the input list lst.

(b)     A binary search tree is organised in the form of a binary tree, where each node stores a value attribute (say, an integer) and two pointers, to the left and the right child of the current node. Both children of a leaf node are None.  In addition, a binary search tree satisfies the following property:  Let x be a node in a binary search tree.  If y is a node in the left subtree of x, then y.value≤x .value. If y is a node in the right subtree of x, theny .value>x .value. Below is a partial Python implementation of a binary search tree data structure.

1         c la s s   Node:

2                     def   _ _in it_ _ ( self , val):

3                                self . left  =  None

4                                self . right  =  None

5                                self . value  =  val 6

7        c la s s   BinarySearchTree:

8                     def   _ _in it_ _ ( self ):

9                                self . root=None 10

11                     de f   m in ( self ): 12                                #  Part   (i)

13

14                     def   find( self , x): 15                                #  Part   (ii)

(i)    Implement a Python function min() that returns the minimum value that is stored in the binary search tree.

(ii)   Implement a Python function find(x) that finds a node in the tree that contains the value x and returns a pointer to that node (if it exists). The function should return None if x does not appear in the tree.

(iii)  What is the best- and worst-case running time of your find(x) function for a binary search tree with n nodes?  Discuss briefly what property of a binary search tree needs to hold so that finding a value in it is as efficient as possible?

Question 3

In this question, you will implement a version of the Merge Sort algorithm for linked lists, where each node in the list contains an integer. Below are some parts of a Python implementation of a linked list, along with additional functions that you will need to implement.

1         c la s s   Node:

2                     def   _ _in it_ _ ( self , val , next ):

3                                self . value  =  val

4                                self . next   =  next 5

6          c la s s   LinkedList:

7                     def   _ _in it_ _ ( self ):

8                                self . head  =  None 9

10                     def   mid( self ): 11                     #  Part   (a)

12

13                     def  merge( self ,  left ,  right):

14                     #  Part   (b) 15

16                     def   mergesort( self ):

17                     #  Part   (c)

(a)     Implement a mid() function that returns a pointer to the middle node of the list.  For a linked list with n nodes, the middle node is defined as the kth node from the beginning of the linked list, fork =「n/21. So, for example, if a linked list has five nodes, mid() should return a pointer to the third node from the beginning of the list. You should not alter the representation of the linked list by adding new variables. Your algorithm should make only one scan of the list.

(b)     Implement a merge(left,right)  function that takes two pointers to the beginning of two sorted lists, merges them, and returns a pointer to the first element of the sorted list.  Your function should not create any list nodes; it should only alter the pointer structure while merging the two lists.

(c)     Implement a mergesort() function that sorts the current list using the strategy of Merge Sort from the lectures.

(d)     What is the running time of your Merge Sort implementation for a linked list of length n? Discuss briefly.

Question 4

(a)     Consider the flow network below with the indicated edge capacities.

Apply the Edmonds–Karp algorithm to find a maximum flow from sto t in this network, showing the flow on each edge and the value of the flow.  State the augmenting paths found by the algorithm, listing the nodes on each path and the value augmented along the path.  Show a minimum s–t cut in the network.

(b)    You are helping the medical consulting firm Doctors Without Weekends set up the worksched- ules of doctors in a large hospital during the vacation days throughout the year. They need to make sure that they have at least one doctor covering each vacation day.

There are k vacation periods (e.g., the week of Christmas, the Easter weekend, the bank holidays, etc.), each spanning several contiguous days.  Let Dj  be the set of days included in the jth vacation period; we will refer to the union of all these days, [jDj, as the set of all vacation days. There are n doctors at the hospital, and doctor i has a set Si of vacation days when he or she is available to work. (This may include certain days from a given vacation period but not others; so, for example, a doctor maybe able to work the Friday, Saturday, or Sunday of the Easter weekend, but not the Monday.)

(i)    Describe a polynomial-time algorithm that takes this information and determines whether it is possible to select a single doctor to work on each vacation day, subject to the constraint that, for a given parameter c, each doctor should be assigned to work at most c vacation days in total,and only days when he or she is available.

Your algorithm should either return an assignment of doctors satisfying these constraints or report (correctly) that no such assignment exists. Argue that your algorithm is correct. State the running time of your algorithm in terms of the number n of doctors and the total number d of vacation days.

(ii)   In addition to the previous constraints, a further requirement is imposed that, for each va- cation period j, each doctor should be assigned to work at most one of the days in the set Dj .  How would you modify your algorithm from part (i), to accommodate this additional constraint?

 

 

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图