代做ECON7230 Monetary Economics Summer 2024 Homework 2代写C/C++编程

ECON7230 Monetary Economics Summer 2024

Homework 2

Due Date: July 2 (Tuesday) (before the end of the day, submit through Moodle)

1. Completing the island model – We have derived the aggregate supply curve yt   = a + bθ(pt  − p(*)t ) in class,

and we have also talked about the demand side but have not got into the details. The aggregate demand curve is

yt  + pt   = xt , where xt  is a normal random variable with zero mean and variance of σx(2) that moves the demand

curve around. At time t you do not know xt  but you know its previous values. Now we can find the rational

expectations equilibrium for the whole economy.

a) Guess a solution for price in the form of pt   = Co  + C1xt. Under this solution, what is p(*)t?

b) Use the equilibrium condition and match the coefficients to find the unknown constants Co, C1 .

c) Suppose the variance of xt  increases, how does it affect the prior belief  pt ~N(p(*)t, σp(2))? How does it affect θ?

Explain your reasoning carefully.

2. A Simple Dynamic Model with Excel

We want to know the effects of reducing the money growth rate gmt  permanently. In period 0, the economy is at the medium-run equilibrium, where un   = ̅(g)y   = 3% and gmo   = 6%. Also, α  = 1 and β = 0.4.

From period 1 onwards, the money growth rate is lowered to 5%.

a) Using Excel (or any similar program), calculate u, π , and gy  from period 1 to period 50. Plot your answers as three separate curves from period 0 to period 50.

b) Do the same exercise, but this time we have β  = 0.1 instead. How does that change your answers?

(Hint: To use Excel, you cannot use the three equations directly. You need to first rewrite the equations such that ut  does not depend on πt  and πt  does not depend on ut.)

3. In the Fischer model, we change the aggregate supply and demand curves to

yts  = pt − Et 一1 pt  + ut

yt  = Mt − pt

That is, there is no demand shock but there is a supply shock ut. The shock is an AR(1) process ut   = put 一1  + et , where et  is a zero-mean white noise. Everything else of the model is the same as the one discussed in class.

a) For the case of a one-period contract, show that money has no effect on output.

b) For the case of a two-period contract, show that money can make output less volatile.

c) How does your answer change if the supply shock is white noise instead of an AR(1) process?

4. Consider a specific version of the Barro-Gordon model:

ut  = u 2(πt − πt(e))

u = utn一1  + Et

zt  = (Ut  − 0.5U)2  + (πt )2

The term Et  is a zero-mean white noise. The policymaker aims at minimizing a discounted sum of zt.

a) Derive the equilibrium under discretion. How do inflation and unemployment rate behave over time (sketch your answer in a graph with time on the x-axis)?

b) Derive the equilibrium under rule. How do inflation and unemployment rate behave over time (sketch your answer in a graph with time on the x-axis)?

5. Bank Run Model: Consider the model about bank runs we covered in class and use the same set of

parameters: the project pays 1 unit if aborted at T  = 1 and pays 2 units if completed at T  = 2, and that there are 100 people and 25 of them are the urgent type, and so on. The only difference now is that the utility function is U = 1 − c2/1

a) Calculate the expected utility at T  = 0 when there is no bank and people have to invest in the project themselves.

b) Use the optimality condition UI (r1 ) = 2UI (r2 ) and the constraint 75r2   = 2(100 − 25r1 ) to solve for the     best deal r1  and r2. Notice that U′ is the marginal utility (which in this case is ), and U′ (r1 ) means you use r1 to replace C in the marginal utility.

c) Calculate the expected utility at T  = 0 when there is a bank, based on the answer for b).

d) Using the shape of the utility function, explain intuitively why the optimal r1  and r2  here are different from the version we have covered in class? Without doing the calculation, describe what will happen to the optimal

r1  and r2  when the utility function is changed to U = 1 − √c/1.

6. Delegated Monitoring Model: Suppose the central bank has increased the interest rate and depositors now require a 10% return instead. All other parameters are the same as in the notes. Calculate the expected profits  for the borrowers and the bank, and intuitively explain how they are different from the case when the required return is 5%.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图