代写DATA4800 Artificial Intelligence and Machine Learning Assessment 3代做迭代

Assessment 3 Information

Subject Code:

DATA4800

Subject Name:

Artificial Intelligence and Machine Learning

Assessment Title:

Machine Learning/AI for a Business Problem

Assessment Type:

Written Report and Video Quiz

Word Count:

2000 Words (+/-10%) Written Report

15-minute Video Quiz

Weighting:

40%: 25% (Written Report), 15% (Video Quiz)

Total Marks:

40

Submission:

via MyKBS and Turnitin

Due Date:

Report and Video Quiz due Wednesday, Week 13

Your Task

Develop a real-world Machine Learning or AI project plan/proposal based on the learnings from the subject.

Assessment Description

This assessment seeks to simulate a real-world task that you may have to undertake in the future. Therefore, the assignment is non-prescriptive and requires you to pose a relevant, small, creative and significant problem to solve that could result in benefits to the organisation of choice.

In this assessment, you need to consider an organisation in an industry of your choice and articulate the steps this organisation needs to take to enable Machine Learning and/or AI for data-driven decision making. You are required to analyse a sample data set to demonstrate  expected AI/ML outcomes.

You need to be familiar with the organisation and industry (e.g., where you have worked or are  working, a future start-up company), NOT an organisation such as Amazon/Boeing/Qantas etc.

Well-reasoned use of Generative AI is encouraged. However, generic and irrelevant content will be heavily penalised in the marking.

The report should address:

o Why AI would help this organisation given their current operations

o What Machine Learning techniques you would recommend

o An example of the predictive model using sample data

o Deployment considerations for the model

o The benefits for the organisation clearly articulated with estimates of expected revenue/profits or Return on Investment

Assessment Instructions

You will be asked to produce a report and video for this assessment.

PART A: Report (25 marks)

•    By Week 9 identify a company and industry you are familiar with that would benefit from Machine Learning/AI. Define a business problem that can be solved using

Supervised Machine Learning - Classification in the chosen company (binary or multi- class).  Find a sample dataset suitable to solve the business problem defined. Note:

o The application needs to be based on Machine Learning/AI (not some other   aspect of analytics). Do not select a regression, forecasting, or reinforcement learning task.

o Focus on a single, well defined (small) application.

o Sample datasets maybe sourced from:

   an organisation. if you work there

   public repositories

   Open government data

•   The company, business problem, and dataset must be validated by your facilitator before you proceed with other steps.

•    By Week 12 draft some preliminary points about the report in class. You are

encouraged to consider the current mode of operation, possible inefficiencies,

available data and how this data may be used to provide efficiencies based on the

concepts and techniques covered in the subject. Think of yourself as a consultant or a founder.

•    Include a list of references that are directly related to the content. Each reference

needs to be linked to at least one specific point in the content of your assessment. It is expected that you will have at least six relevant references.

•    Upload the files that contain your predictive modelling workflow (in Orange) to the file   submission Dropbox provided on the assessment page. No marks will be awarded for  the assessment unless the report and the Orange workflow files have been submitted.

•   The report must be written using Google docs template (shared by your lecturer) and submitted via Turnitin. To properly use the Google Docs template, please follow the   below steps:

1. Go to https://docs.google.com/document/d/1enPWUYRaZj-4nRIYbPX7ZvPBQaoKUDQFkmmuZWTCWFU/edit?usp=sharing

2. Sign in to your Gmail/Google account (if not already signed in). Click “File – Make a Copy” to copy the template to your Google Drive

3. Click “Share” . Change “Restricted” to "Anyone with the link”, and change “Viewer” to “Editor” .  Click “Copy link” .

4. Paste the copied link in the header of your Google Doc under “Kaplan Business School” .

5. Do all your writing directly in your Google Doc under your Gmail/Google account.

6. Download your report as PDF and submit via Turnitin by the submission deadline.

PART B: Video Quiz (15 marks)

•    Record yourself doing the video quiz using zoom screen share. Instructions are available on the assessment page.

•     There are four sections: (1) business problem identification, (2) data collection, (3)

machine learning implementation, and (4) improvements. For each section, the student will have 2-3 minutes to answer all the questions within the section. The total allocated  time for the video quiz is 15 minutes.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图