代写CHME0017 MSc Module in Public Health Data Science ASSESSMENT代写R编程


MSc Module in Public Health Data Science ASSESSMENT

England's National Health Service (NHS) has been trialling an innovative programme of targeted lung health checks (TLHC), including lung function tests and chest screening, to improve lung cancer detection and outcomes. The initial results were positive, not just for detecting lung cancer but for diagnosing chronic obstructive pulmonary disease (COPD) and supporting people with smoking cessation. This programme is expected to run nationally, covering all areas of England by 2029, with general practitioners (GPs) inviting people over 55 but less than 75 years who have smoked cigarettes to attend lung screening in mobile units.

This is usually done through letters posted to existing patients. However, targeting geographical regions with the greatest risk of lung cancer and improving uptake is crucial to the programme's cost-effectiveness.

For your assignment, we would like you to imagine you are a public health scientist working at    the lower tier local authority (LTLA) you were assigned on Day 2 of the face-to-face sessions. Your Integrated Care Board (ICB) has requested an intelligence report to inform the

implementation of TLHC in your local area. Specifically, they have asked the report , in the style of a short scientific article, to cover the following three components:

1.  The ICB must decide how many screening units to allocate to your LTLA. To help them with this allocation, they have requested a short descriptive analysis of lung cancer incidence and/or mortality for your LTLA. Use indicators you can describe by sex, age,  time, geography or a combination of at least two factors. Part of your analysis should be benchmarked against indicators for other LTLAs and/or England overall. You do not need to recommend the number of screening units. Rather you should generate an analysis to  help the ICB make that decision.

2.  The ICB must decide where to locate screening units within your LTLA. To help them decide, they have asked for the following:

a.  A descriptive analysis of two TLHC-relevant indicators available for GPs in your LTLA (e.g. smoking rates, COPD diagnoses, lung cancer referrals). See the mapping file on Moodle (x-boundary-mapping-2023-24) to determine your LTLA GP practices/codes).

b.  A recommendation of four different locations for the mobile screening units within  your LTLA. The recommendations should be guided by GP-level analysis in task 2 (a) and considerations around accessibility, such as transport. You can use mapping websites for this step to help you (e.g. Google maps). Whilst this section does not have to be in your R code, you should clearly outline your methods so the reader can broadly replicate your steps here.


3.  Earlier pilot studies of TLHCs have found uptake to be very low. Therefore, the ICB has asked for a short engagement/dissemination strategy to influence the stakeholders in your LTLA who have the most to gain from TLHCs.

Your assessment could be based on a range of publicly available data sources, but we suggest you start by examining data available from the Public Health Profiles on the Fingertips site (https://fingertips.phe.org.uk/). There is documentation on the API for these data here.

On Day 2 of the face-2-face sessions, we will introduce and review the assignment. You will then get the chance to work on the assignment in your groups for Days 2 and 3. Whilst you will work on this problem in groups, it is essential that your final code and report submitted is entirely your own work.

Please see the handbook for guidance on Achieving Anonymity, late submission penalties and excess word count penalties.

Assessment Submission Deadline: 03 July 2024 at 17.00 BST

Submissions will be made via Moodle. We would like you to submit three documents as part of this assignment:

1.  An R Markdown file or R script. that contains the analysis that we can run to reproduce your analysis

2.  A PDF of the R Markdown file or R script.

3.  A Report that has a maximum of 1,500 words of text (not including analytical code, tables, or Figures) and contains the following sections:

•    Background

o A statement of the context and setting with references

•   Aims

o A description of the aim for the analysis you have developed

•    Methods:

o Description of data items included in the analysis

o Description of the methods for creation of the analysis

•    Results (maximum six tables or figures)

o Presentation of the overall results

o Presentation of disaggregated results

•    Discussion with references

o Interpretation of results, including their strengths and weaknesses

o How the results could be used to improve the health of the public by media engagement and dissemination

•    Reference list in Harvard format

List of acronyms:

NHS - National Health Service

TLHC - Targeted Lung Health Checks

COPD - Chronic Obstructive Pulmonary Disease GP - General Practitioner

LTLA - Lower Tier Local Authority ICB - Integrated Care Board

API - Application Programming Interface BST - British Summer Time

Marking Criteria

The report you write should be concise, interesting and informative. It should have a clear structure using the sections as suggested above. During the Face-to-Face days you will work on the assignment task in groups, however, for this assignment, the work you submit must be your own. As discussed during the Face-to-Face sessions, it is acceptable that some of the scripts used within your R code align with others, but final decisions on which data to include and how to combine and analyse these data must be decisions you make alone. Please be extremely careful to appropriately acknowledge the work of others included in your assessment and within your R scripts and you should indicate in the comments which sections are taken from code shared by others. You will have marks deducted and will be reported to the organiser of your MSc if we find that you have copied material written by others without appropriate acknowledgement. The text in your report and rest of your R Scripts, including all descriptive comments on the code, must be entirely original and the marks awarded will only be for original content written by you.

The marking sheet below will be used by the examiners to assess your assignment and you should carefully review this when undertaking this task. The percentage in brackets below indicates how much weight of the final mark will be awarded for each section.

Background (10%) A statement of the context and setting. This section should be used to place the study in the context of available evidence

0-1

Insufficient

Insufficient understanding, arguments are mainly trivial or irrelevant.

2-3

Limited

Justifications adequate but incomplete. Little use of literature.

Some valid arguments but poorly organised or under developed. Repetition.

4-5

Reasonabl e

Organised justification of the approach. Arguments are mostly valid but underdeveloped and/or are organised in a list-wise

fashion.

6-7

Good

Coherent justification of the standpoint. Valid arguments

mainly linked into narrative. Good use of literature but mainly descriptive or comparative.

8-9

Very good

Critical use of the literature or careful overview of existing research. Good development of arguments.

10

Excellent

Considerable evidence of independent thought. Sustained justification of the standpoint. Excellent, critical use of

literature.

Aims of your analysis (5%) A description of the aim for the analysis you have developed. This section should be used to define the primary aim of the assessment and to explain why creating one is important

0-1

Insufficient

Little or no rationale. Insufficient justification, arguments are mainly trivial. Little to no link with background section.

2-3

Limited

Justifications adequate but incomplete. Link with the background section lacks clarity or relevance.

4-5

Reasonabl e

Reasonable justification for the assessment but ambiguous or unrealistically broad. Some link to the background section.

6-7

Good

Strong justification, link to background section and answerable, specific research question(s).

8-9

Very good

Very good extension of literature to lead to its own rationale. Flows well from the Background into an answerable and

specific research question(s).

10

Excellent

An excellent outline of why the question is worth asking and

why this is worthwhile to participants or wider service delivery.  A contextual framing of the research question/aim(s) in relation to relevant policy and practice and/or literature bases which

flows well from the Background.

Data items included in the analysis (15%): This section should be used to state what data

items were included, why these are appropriate and a justification of the choice of data and any limitations or special requirements.

0-1

Insufficient

Majority of relevant information is incomprehensible/incomplete.

2-3

Limited

Data appropriate but some information irrelevant, incomplete or not justified in terms of project and/or stated aims.

4-5

Reasonabl e

Data relevant and reasonable choice.  Most relevant elements are included and comprehensible but some omissions or not    fully justified in terms of project and/or stated aims.

6-7

Good

Data relevant and strong choice. Only minor omissions and justifications.

8-9

Very good

Good level of detail on all elements of data, strong approach taken to data used which is well justified and tied strongly to  aims.

10

Excellent

Excellent data choices with a well justified approach tied strongly and clearly to aims

Methods  (20%):  This section should be used to describe the methods used in the analysis and justification for the methodological approach taken.

0-1

Insufficient

Majority of relevant information is incomprehensible/incomplete.

2-3

Limited

Basic outline  included,  but  replication  problematic  or  design weak

4-5

Reasonabl e

Some omissions, but the key elements are generally included, and comprehensible and design is described.

6-7

Good

All elements are included but partial omissions or inaccuracies. Replication possible with minor clarification. Some justification and referencing.

8-9

Very good

Good level of detail. Replication possible. Well referenced and justified.

10

Excellent

Complete and correct replication possible. Fully referenced and strongly justified approach.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图