代做MATH39512 Survival Analysis for Actuarial Science: example sheet 3代做留学生SQL语言

MATH39512 Survival Analysis for Actuarial Science: example sheet 3

*=easy, **=intermediate, ***=difficult

* Exercise 3.1

Let T1,..., T5  be i.i.d.  positive random variables, where the random variable Ti  represents the genuine failure time of individual i.  Let C1,..., Cn  be positive random variables, where the random variable Ci  represents the censoring time of individual i.  Assume we have the following outcomes of the random variables Ti  and Ci  for i = 1, . . . , 5:  (T1, T2 , T3 , T4 , T5 ) = (5, 7, 3, 8, 5) and (C1, C2 , C3 , C4 , C5 ) = (6, 6, 9, 8, 8).

(a) Assume that for each individual i we observe him/her from time 0 until the minimum of Ti  and Ci and we record this minimum of Ti  and Ci  as his/her survival time. The survival time of individual i is considered to be censored if and only if Ci  < Ti. Compute the Nelson-Aalen estimate of the cumulative hazard function corresponding to the above observations and plot your estimate.

(b) Let Nt  = Σi(5)=1 1{Ti≤t,Ti≤Ci} .  Draw the sample path of the process N = {Nt  : t ≥ 0} that corresponds to the above observations. What does Nt  represent?

(c) Let Rt  = Σi(5)=1 1{Ti≥t,Ci≥t} .  Draw the sample path of the process R = {Rt  : t ≥ 0} that corresponds to the above observations. What does Rt  represent?

(d) Draw the sample path of the process A = {At : t ≥ 0} defined by At = R 0 t∧τR Rs/1 dNs that corresponds to the above observations and where τR = inf{t > 0 : Rt = 0}. What can you conclude about At?

** Exercise 3.2

Suppose we have the following survival data for two homogeneous groups, where + denotes a censored survival data:

Group a 15+ 24 30 40+ 42 43+

Group b 10 12+ 26 28 29 41

The hazard function of the survival time of an individual from group a, respectively b, is denoted by µa(t), respectively µb(t).  We want to test whether the survival time distribution of an individual from group a is different from that of an individual from group  b.   To  this  end,  we want to test,  for  a given t0 ,  the null hypothesis,

H0  : µa(t) = µb(t)    for all t ∈ [0, t0 ∧ τR],

versus HA  : µa(t) µb(t) for some t ∈ [0, t0 ∧τR], where τR  is the first time when there are no more individuals at risk in one of the two groups.   Recall that the  log-rank test says to reject  H0  at significance level α if |Zt0 / Vt0 | > zα/2, where

with Rt j denoting the number of individuals at risk just before time t in group j and Aj (t) denoting the Nelson-Aalen estimator at time t of the cumulative hazard function of an individual from group j;

with Nt j denoting the number of individuals in group j that are observed to have failed before or at time t;

•  zα > 0 is such that Φ(zα) = 1 − α, where Φ(·) is the cumulative distribution function of the standard normal distribution.

(a) Given the survival data at the beginning of the question, perform, by hand, the log-rank test with t0  = 50 and at significance level 0.05 and report your conclusions.

(b)   (i) Show that in general (i.e. without making use of the above survival data) for any t ≥ 0,

(ii) Verify that the two equalities in (i) are correct for the particular survival data given at the beginning of the question

(iii) Explain in words why can, under the null hypothesis, be interpreted as

the expected number of deaths by time t in group a given that we observe/know, at each time, the numbers at risk in each group and the aggregate number of deaths over both groups (but not the number of deaths in each group separately).

** Exercise 3.3

Consider the following observed values of the survival times of a group of independent homogeneous individuals, where + denotes a censored value: 1,  3,  3+, 4+,  5,  6,  6+,  6+,  8,  10+. We want to test whether the hazard rate is a constant given by λ = 0.15.  Therefore we want to test the null hypothesis

H0  : µ(t) = λ for all t ∈ [0, t0]    versus    HA  : µ(t) λ for some t ∈ [0, t0],

where λ = 0.15 and t0  = 10.  The following 1-sample test says to reject H0  at significance level α if where

Z(~)t  = Nt λ 0(t) Rsds with Nt  denoting the number of individuals that are observed to have failed before

or at time t and with Rt  denoting the number of individuals at risk just before time t,

V(~)t = λ 0(t) Rsds,

•  zα > 0 is such that Φ(zα) = 1 − α where Φ(·) is the cumulative distribution function of the standard normal distribution.

(a) Given the survival data at the beginning of the question, carry out this 1-sample test (with λ = 0.15 and t0  = 10) at significance level 0.05 and report your conclusions.

(b) Show that in general (i.e. independently of the survival data provided) we can rewrite the test statistic Zet0 as Zet0 = R 0 t0 Rsd A(s) − A0(s)  , where A(t) is the Nelson-Aalen estimator and A0(t) is the cumulative hazard function under the null hypothesis.

* Exercise 3.4

Consider the following observed values of the survival times of 12 individuals, where + denotes a censored value:

1.5+   2   2.5   4.5   5+   7+   7.5+   8   8.5+    10    12+    14.

(a) Compute the Nelson-Aalen estimate corresponding to the above data.

(b) Under certain conditions an unbiased estimate for the variance of the Nelson-Aalen estimator at time t is given by Vb (t) := R 0 t∧τR R2s/1 dNs, where Rs is the number at risk just before time s and Ns is the number of individuals that have been observed to fail by time s. Compute Vb (t) for t ∈ [0, 14] and plot the outcome.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图