代写CE335 DIGITAL SIGNAL PROCESSING Undergraduate Examinations 2020代做Statistics统计

CE335-6-AU

Undergraduate Examinations 2020

DIGITAL SIGNAL PROCESSING

Question 1

(a) Consider an analogue signal x(t) = 2cos(2000πt) + sin(4000πt).           [10%]

(i) Determine the sampling frequency that should be used to avoid aliasing.          [3%]

(ii) Assume that the analogue signal x(t) is sampled to obtain a discrete-time signal x[n] = 2cos(2πn/5) + sin(4πn/5). Determine the sampling frequency used.          [4%]

(iii) If the discrete signal x[n] is passed through an ideal low pass filter with cutoff frequency ωc = 3π/5, what is the resulting output signal?           [3%]

(b) Consider a linear time invariant (LTI) system with an impulse response h[n] = δ[n − 2] − 3δ[n + 4] and that the system is triggered with an input signal x[n] = δ[n − 1] + 0.5δ[n + 5]. Calculate the output signal y[n].      [6%]

(c) In the Welch method for power spectral density (PSD) estimation, the segments’ overlapping length is M − D, where M is the length of each segment and D is the non-overlap length. If the signal length is N = 125, the number of segments is K = 3, and M = 75, what is the percentage of overlapping between the segments? What are the advantages and disadvantages of the Welch method?     [10%]

(d) Determine whether the system y[n] = H[x[n]] = 2x[n] + u[n] is a linear time-invariant (LTI) system, where u[n] is the unit step function. Justify your response.    [10%]

Question 2

(a) Consider a rectangular pulse signal x[n] = {1, 1, 1, 1}, n ∈ [0, 3].         [18%]

(i) Find the 4-point discrete Fourier transform. (DFT) of x[n].              [8%]

(ii) Pad the signal x[n] with 4 zeros and find the 8-point DFT of the padded signal.              [8%]

(iii) Discuss the results.                 [2%]

(Hint: Use P N−1k=0 a k = 1−aN1−a, a = 1 and Euler’s formulae cos(ω) = e jω+ 2 e−jω and sin(ω) = e jω−e−jω2j)

(b) One of the fundamental properties of DFT is the spectrum symmetry according to which it is WN N−m = (WN m) ∗ , where WN = e −j2π/N . Prove that property.    [6%]

(c) You are given an LTI system with an impulse response h[n] = (−0.6)nu[n] + 0.4 nu[n], where u[n] is the unit step function. Find the region of convergence of this system.      [6%]

(Hint: Use P ∞k=0 a k = 1 1−a , |a| < 1.)

Question 3

You are given a digital filter with transfer function H(z) = 1+0.81z−2/(1+0.2z−1)(1−9z−2 ).

(a) Find the relationship between the input x[n] and the output y[n] of the filter.   [6%]

(b) Find the poles and the zeros of the filter and sketch the zeros-poles diagram. Comment on the stability of the filter.  [12%]

(Hint: az2 + bz + c = (z − z1)(z − z2), where z1 = −b + √ b2 − 4ac2a and z2 = −b − √ b2 − 4ac2a)

(c) Rewrite the transfer function so that it is a cascade of an all-pass filter with transfer function Hap(z) and another filter with transfer function H1(z)., i.e. H(z) = Hap(z)H1(z). Sketch the zeros-poles diagram of the all-pass filter.       [8%]

(d) Draw the canonical implementation of the original filter with transfer function H(z). How many delay units are required?         [8%]







热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图