代做ECON12-200 Linear Models and Applied Econometrics代做Statistics统计

ECON12-200 Linear Models and Applied Econometrics

Homework 1:

Due in Week 5 by Friday 4pm

Learning Outcomes covered in this assessment:

1. Demonstrate knowledge of linear regression, its maintained assumptions and their relevant statistical properties.

2. Use  simple/multiple  regression  models  to  interpret  the  underlying  relationships between the variables and evaluate their statistical significance through hypothesis testing.

4. Demonstrate the ability to solve business problems using econometrics packages.

5. Demonstrate the ability to produce a written report that demonstrates higher order understanding of key concepts in applied econometrics.

Context

Regression analysis is a powerful statistical tool used in real life for various purposes, primarily to model and analyse relationships between variables.

Formatting

Assignment can be typed or hand-written or combinations of both. If it is hand-written, take an image and convert them into PDF. Homework assignments must be submitted in iLearn in a single PDF file.

Use of Artificial Intelligence

You can utilise GAI to assist with your questions However, you must adapt the AI-

generated answers to conform with the methods taught in this course. Students maybe

asked to explain their answers if they use a different approach from what is taught in

class  in  order  to  receive  full  credit.  Be  sure  to  appropriately  reference  any  cited

materials. Inappropriate use of subject content or other sources in your response will be

considered a breach of the University’s academic integrity policy. Refer to the Bond University   Generative   Artificial   Intelligence   (GAI)   resources   for   guidance.   All

assessments must include aStatement of Authorship.

Academic Integrity

Academic Integrity means adhering, in words and actions and across all aspects of student   life, to an academic moral code bound by Bond’s seven integrity principles of honesty, trust,

fairness, respect, responsibility, courage, and professionalism. Breaches of academic

integrity are known as either poor scholarship or academic misconduct. The University

supports Academic Integrity by providing students with resources and support. Visit

Academic Integrity at Bondor seek support from your educators,BondCare support servicesincluding theAcademic Skills Centre, orLibrary services.

Rubrics

 

Case: Traffic congestion

Victoria’s transport system has three major problems. The first problem is congestion and

crowding, with Victorians experiencing significant congestion on roads, trains and trams.

This means trips take longer, are less comfortable and less reliable, which costs people and

businesses time and money. The second problem is that the accepted solution of building new infrastructure to ease congestion won’t solve congestion unless they take other steps. The

third problem is that there are no incentives in the current system for people to change their   behaviour. Current pricing system is simple enough, but it doesn’t encourage people to make different choices about the time, route, mode or quality of their trip. This means that even as  congestion worsens, people are not motivated to change their behaviour.


In this case study, we observe the movement of Prof. Bill Griffith on each morning between 6.30AM and 8.00AM, who leaves the Melbourne suburb of Carnegie to drive to work at the University of Melbourne.  The time it takes Bill to drive to work (TIME) depends on the

departure time (DEPART), the number of red lights that he encounters (REDS), and the number of trains that he has to wait for at the Murrumbeena level crossing (TRAINS). Observations on these variables for the 231 working days in 2006 appear in the file

“Homework1.xlsx” . TIME is measured in minutes. DEPART is the number of minutes after 6.30AM that Bill departs.

You will assist Prof. Griffith to develop a model to predict the time it takes Bill to drive to work.

Question1

Professor observes the following based on the sample of 18 trips:

  

where y = the time it takes Bill to drive to work and x = departure time. Answer the

following based on the summary information above 18 trips. Note: Do not use Excel file to answer Question1.

(a)  Compute the correlation coefficient between x andy.                           (4 Marks)

(b)  Compute the least squares estimates of β1  and β2  in the model:  y = β1 + βx e . Interpret the regression coefficients.    (8 Marks)

(c)  Find and interpret the 99% confidence interval for β1  assuming that the standard error of b1  is 3.2.       (4 Marks)

(d)  Find and interpret the 90% confidence interval for  β2    assuming that the standard error of b2  is 0.1.       (4 Marks)

(e)  Is there a linear relationship between y and x at the 1% level of significance assuming that the standard error of b2  is 0.1?        (5 Marks)

(f)   Is there a positive linear relationship between y and x at the 1% level of significance assuming that the standard error of b2  is 0.1?                     (5 Marks)

Question 2

Consider the regression model:  ln(TIME) = β1 + β2 ln(DEPART) + e .                             (1)

(a)  Estimate equation (1) using least squares technique and report the results.  (3 Marks)

(b) Interpret the regression coefficients.                                                         (4 Marks)

(c)  Find and interpret the 90% confidence interval for β1 .                          (4 Marks)

(d) Find and interpret the coefficient of determination.                               (3 Marks)

(e)  Using a 10% significance level, based on the model estimated in (a), test the

hypothesis that departure time has a positive effect on the time to travel to work. Clearly present the test statistic and the restricted model.         (6 Marks)

(f)  Based on the model estimated in (a), determine the time to travel to work when the DEPART is equal to 50.   (3 Marks)

Question 3

Consider the regression model:

TIME = β1 + β2TRAINS +β3REDS +β4 ln(DEPART) + e .                                        (2)

(a)  Estimate equation (2) and report the regression results.                        (3 Marks)

(b) Interpret the estimated coefficients.                                                        (10 Marks)

(c)  Compute the variance of the residual (e) series.                                      (3 Marks)

(d) Using the model estimated in (a), find and interpret the 99% confidence interval for β3   and β4  .        (8 Marks)

(e)  Find and interpret the coefficient of determination.                               (3 Marks)

(f)  Using a 1% significance level, test the following hypotheses,

      (i) A one percent increase in the departure time increases the TIME by 1 unit.  (5 Marks)

      (ii) Each red light increases the TIME by 2 units.                                    (5 Marks)

(g) Use the confidence interval approach to test the following hypotheses at the 5% significance level,

      (i) Each train increases the TIME by 3 units.                                            (5 Marks)

      (ii) Each red light increases the TIME by 2 units.                                    (5 Marks)










热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图