代写COMM1190 Data, Insights and Decisions 2024 Assessment 1: Initial report代做迭代

COMM1190 Data, Insights and Decisions

Assessment 1: Initial report

Customer churn project

Version as of 29 May 2024

The Head of Management Services of Freshland needs to make a presentation to the Senior

Executive Group who have requested an update on customers who belong to their rewards card  program. The Head commissioned a pilot study that was undertaken by a summer intern using a sample of administrative data that contains information on rewards card customers and their store purchases.

The intern's report written in response to these instructions is contained in a memo to the

Head, a copy of which is included in Appendix A. The data dictionary in Appendix B refers to the data you will use. This data set will contain, as a subset, the initial pilot data analysed by the intern. See Moodle in the Assessment section for further information on your personalized data.

MEMORANDUM

DATE:  17 March, 2024

TO: Head, Management Services

RE: Research project using customer pilot data

Introduction

This report documents an initial statistical analysis of customer data collected from the rewards program database. All information was extracted in the first week of January 2024. The initial data set contains observations on 5,847 customers who were all members of the rewards program and includes information on customer demographics and spending at their last purchase over the preceding 12 months. The analysis is divided into 4 sections covering general customer characteristics, spending, level of satisfaction with our services at that last purchase, and a concluding section with recommendations.

Customer characteristics

Figure 1 and Table 1 provide some key characteristics of customers in the rewards program.

Most customers are female (79.4752%) and live in metropolitan areas (63.3145%). The average age is 48.017059 years, and they have been members of the rewards program for an average of   2.636224 years. One way to define a loyal customer is to use their length of membership as an indicator. Define a new variable ltmem=1 if member>=3 and zero otherwise. According to this definition, 58.235% of customers are loyal.

According to Figure 2, the age distribution of customers is bell-shaped, and there are no outliers.

Customer spending

The spending variable that was made available represents the amount spent on the last shopping occasion during 2023. Table 2 provides some summary statistics for last and cash.

There was missing data because some customers had no transactions in the last year, leaving a sample size of 5330 for the analysis. On average, customers spent $79.87305. Because the mean ($79.87305) and median ($64.17379) are not the same, we know that this distribution is not symmetric. The proportion of customers using cash to conduct this transaction was 0.208818.

A correlation analysis was conducted, and the results presented in Table 3. Older customers spent less as did customers belonging to the rewards program for longer. Female customers and those in metroareas spent more but none of the correlations were very large. There were stronger correlations between customer characteristics and cash. Customers who were older and belonged to the rewards program for longer were more likely to use cash. The strong negative correlation between cash and last indicates that cash transactions tended to be for smaller amounts.

Customer satisfaction

When asked about whether they were satisfied with the last shopping experience, the average rating of customers was 2.147092, see Table 4.

The underlying distribution of the satisfaction rating is very skewed, with nearly 50% of customers providing the lowest rating, see Figure 3.

Referring to the correlation matrix in Table 3 reveals there is little correlation between sat and age or female. However, higher ratings are positively associated with longer term members and negatively associated with being a metropolitan customer. Those who used cash and spent less were more satisfied.

The strong positive association between length of membership and satisfaction is highlighted in Figure 4 where the distribution of ratings has been separated by the previously defined variable, ltmem. The low satisfaction rating is concentrated amongst the newer members.

Conclusion and recommendation

Several conclusions can be drawn from the analysis that has been conducted. The typical rewards program customer is female, about 48 years old, lives in a metropolitan area and has been a member for about 2 years.

Cash is still being used for transactions and not surprisingly is more prevalent amongst older customers who have belonged to the rewards program for longer.

Satisfaction levels are low and need to be improved. Because the correlation between higher ratings and length of membership was high, more attention should be paid to newer members and the reasons for why they are dissatisfied. This is an important finding in understanding customer loyalty but there needs to be further analysis to better inform retention strategies.

Recommendation:  The current data set is not overly large, and obtaining more customer observations is essential to facilitate extra analyses and to find more significant results.

Appendix B: Data dictionary

The data seton customers from the rewards program database includes the following variables:

age Age of the customer in years

female =1 if customer is female; =0 otherwise

member Number of years as a member of loyalty club (top coded at 4)

metro =1 if customer is located in a metropolitan area; =0 otherwise

location Customer location: 1=metropolitan; 2=regional; 3=all other regions

ID Unique customer identifier

last Amount ($) of the last transaction in the previous 12 months

cash =1 if the last transaction was paid in cash; =0 otherwise

sat Satisfaction rating of last transaction; 1 (highest=Excellent) to 5 (lowest=Poor)

pilot =1 if initial data collected for pilot study; =0 otherwise






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图