代写EEC180 — DIGITAL SYSTEMS II WINTER QUARTER — 2022 FINAL EXAM帮做R编程

EEC180 — DIGITAL SYSTEMS II

WINTER QUARTER — 2022 — 5 UNITS

FINAL EXAM

1.  COUNTERS (25 POINTS)

Consider an 8-bit binary counter with the following specifications:

•    The counter has a clock input as well as two synchronous inputs M and reset.

•    The counter has two outputs: an 8-bit unsigned number count and a 1-bit saturated.

•    If M= 0, the counter counts up. However, when count = 255, the counter is considered sat- urated and it holds its count at 255 as long as M = 0.

•    If M= 1, the counter counts down. However, when count = 0, the counter is considered saturated and it holds its count at 0 as long as M = 1.

•    The saturated output is set to 1 when the counter is saturated.

•    The counter resets (count = 0) when reset = 1. Write a Verilog model for the counter.

2.  FSM IMPLEMENTATION (25 POINTS)

Consider the state diagram shown below.

1. Design a circuit (with input x and output z) that implements the above state diagram and uses one-hot encoding for the state assignment. Assume that the only available components are D flipflops (with both Q and Q outputs) and 2-to-1 multiplexers. Make sure to use the minimum number of multiplexers. (10 points)

2. Write a verilog model for a D flip-flop (with both Q and Q outputs). (3 points)

3. Write a verilog model for a 2-to-1 multiplexer. (2 points)

4. Write a verilog model of your design in part 1 using the components described in parts 2 and 3. (10 points)


3.  COMBINATIONAL ARITHMETIC CIRCUITS (15 + 10 = 25 POINTS)

Consider a combinational circuit that computes the following three arithmetic functions:

X A3                              Y A4                                   Z  A4 – 1

Let us assume that A is an n-bit 2’s complement signed number and the outputs (XY, Z) are 2’s complement signed numbers.

1. What is the minimum number of bits needed (in terms of n) for each of the outputs XY, and Z?

2. Write a verilog model for the above circuit for the case of n = 4.

The range for a signed n-bit number A is: .

The range for X is . Hence . This is the same as


. So, 3n - 2 bits is sufficient to hold X without overflow.

The range for Y is . Hence . This is the same as

and . So, 4n - 2 bits is sufficient to hold Y without overflow.

Since , then . Hence, and

So, 4n - 3 bits is sufficient to hold Z without overflow.


4.  MULTIPLE-PORT MEMORY (25 POINTS)

Consider the 3-port SRAM shown below. The SRAM has two read/write ports and one read- only port. All read operations of this SRAM are combinational (asynchronous). The output signal busy2 is set to 1 when the write operation at port2 cannot proceed due to a concurrent write at the same address from port1. Write a complete Verilog model of the SRAM. Your model should be able to handle any special cases that may arise when using the SRAM.

5.  SEQUENTIAL ARITHMETIC CIRCUITS (25 POINTS)

This problem involves the design of a sequential circuit that finds the square root of an 8-bit unsigned binary number N using the method of subtracting out odd integers. To find the square root of N, we subtract 1, then 3, then 5, etc., until we can no longer subtract without the result going negative. The number of times we subtract is equal to the square root of N. For example, to find square root of 27 we do the following:

Subtraction #1:                                           27 – 1 = 236

Subtraction #2:                                           26 – 3 = 23

Subtraction #3:                                          23 – 5 = 18

Subtraction #4:                                           18 – 7 = 11

Subtraction #5:                                            11 – 9 = 2

Cannot subtract:                                           2 – 11

Since we subtracted 5 times, then the square root of 27 is 5.

Write a Verilog model that finds the square root of an 8-bit unsigned integer using the above method. Your model should have three inputs: the input number N, a signal input_ready that is set to 1 when the input number N is available, and a clock signal clk. It is safe to assume that once input_ready is set to 1, it will remain 1 during the process of computing the square root. Your model should have two outputs: the square root S of the number N and the output_ready output that is set to 1 when the square root S is computed.








热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图