代写DSC 20 Project: Classes, Inheritance and Exceptions代写Python编程

DSC 20 Project: Classes, Inheritance and Exceptions.

Total Points: 100 (10% of the Course Grade) Submission due (SD time):

Checkpoint: Thursday, May 30th, 11:59pm

Final submission: Thursday, June 6th, 11:59pm Starter Files

Download project.zip

Contents:

project.py

image_viewer.py A file for viewing your images

img/ A folder of images

knn_data/ A folder of sample images for the KNN

Checkpoint Submission

Earn 5 points extra credit by completing Part 1 and Part 2 by the deadline above.

Final Submission

Submit the project.py file to gradescope.

Only this file will be checked

You do not need to submit any other files

Slip Day: If in a group, both of you need slip days in order for it to count.

Partners

You can work with one other person on this project. If working with a partner, make sure to add them after you submit. If you resubmit, please re-add your partner - Gradescope will not automatically relink your latest submission to your partner. You should submit only one copy per team.

Important: The  lateness  policy  for the  project  is  the  same  as  all homeworks. However, both partners must have an available slip day before you submit late.

Requirements

1. You cannot use any libraries in project.py

2. The project will not be graded on style

a. You do not need to submit your doctests but it is highly recommended to test your code with custom doctests (we will have our own tests, not just provided ones).

b. You can add docstrings, but they will not be graded.

3.  Raise exceptions when required by the question

a. Exception requirements will be in bold blue

b. If there are no exception requirements, you can assume valid inputs

c. Do not use asserts

Project Overview:

In this project, we will make a basic image processing app.

Part 1 covers how images are stored in code.

Part 2 introduces some image processing methods in a Processor Template.

Part 3 uses inheritance to simulate a monetized app.

Part 4 uses inheritance to simulate a premium app with new methods.

Part 5 implements a KNN classifier to predict the labels of images.

In the digital world, images are defined as 3-dimensional matrices: height (row), width (column), and channel (color). Each (row, col) entry is called a pixel. Height and width dimensions are intuitive : they define the size of the image. The channel dimension defines the color of an image.

The most commonly used color model is RGB. In this model, every color can be defined as a mixture of three primary color channels: Red, Green and Blue. Thus, the color of a pixel is digitally defined as a triplet (R, G, B). Each element in this triplet is an integer (called intensity) with value between 0 and 255 (both inclusive), where  0  represents  no R/G/B is present and 255 means R/G/B is fully present. Thus, (0, 0, 0) represents black since no R/G/B are present, and (255, 255, 255) represents white. To better understand how the RGB color model works, you can play around the RGB value with this online color wheel.

In our project, we will use a 3-dimensional list of integers to structure the pixels. This picture s hows how a pixels list is structured.

The first dimension is the row, starting from the top. The second dimension is the column, starting from the left. The third dimension is the color channel. In other words, len(pixels[row][col]) = 3, and each of the items in the pixels[row][col] list represents an intensity (0 - 255, both inclusive) of each color. Therefore, to index a specific intensity value at row i, column j, and channel c of the pixels list, you use pixels[i][j][c].

Note that the width of an image is the length of the column dimension (number of columns), and the height of an image is the length of the row dimension (number of rows). Since in Python we conventionally consider (row, column) as the order of dimensions for 2-dimensional lists, make sure to distinguish these notions clearly.

Install Pillow and NumPy

The project uses two packages: NumPy (np) and Pillow (PIL). These are two of the most common packages to use for image processing. Although we prevent you from using  these  packages  in  your  own  implementation,  you  can  still  use  them  for testing. If you have not installed these packages before, run the following command in your terminal :

Mac/Linux: python3 -m pip install numpy Pillow

Windows: py -m pip install numpy Pillow

If you have trouble installing the packages, try updating pip first: Mac/Linux: python3 -m pip install --upgrade pip

Windows: py -m pip install --upgrade pip

Please note : You are not allowed to use numpy or PIL/Pillow methods in your code.

Testing

We  have  provided  basic  doctests  that  cover simple cases to check if your code works. Note that you will want to create more tests to check edge cases.

The doctests use small square images between 6px and 16px in size. They also use the  included expected output images in the img/exp/ directory to compare your results against.

The doctests include some exceptions, deep copy, and cost value checks. Recall the difference between deep and shallow copies.

Shallow Copy: is a concept that refers to creating a new object that shares the underlying elements with the original object. In other words, a shallow copy creates a new object but references the same nested objects or elements as the original.

Deep copy: is a concept that refers to creating a complete and independent copy of an object, including all of its nested objects or elements.

Since this  project  is  about  processing  images,  it  makes  more  sense  for you to visually check the output. Therefore, your main way of debugging will be to look at the images generated.

Mac/Linux: python3 -m doctest project.py Windows: py -m doctest project.py

Using image_viewer.py

We have included a python file that allows you to view your images to check for errors.

To run the file, use the following commands

Make sure to change the path in the "img/out/the_file_to_view.png" to connect to the image that you want to view.

Mac/Linux: python3 image_viewer.py "img/out/the_file_to_view.png" Windows: py image_viewer.py "img/out/the_file_to_view.png"

If you get an error like "ModuleNotFound Error: No module named 'tkinter'", then

run the command python3 -m pip install tk. If this doesn’t work, you can come to office hours and we can help install it for you (involves reinstalling python).

The script. takes in a file path that points to an image, and displays it for you to view

You can zoom with your scroll wheel and pan around with your mouse. When you hover over a pixel, it will display the current color value at the bottom.

You can use this to check where your code is creating the wrong output values. You can also use it to manually compare your output against the expected output.

Video Guide:

This is a setup video from a previous quarter with a similar project: Link

We recommend that you watch this video while working on the project to better understand all of its components.

Efficiency and Runtime for Autograder

Because  we  are  dealing  with  massive  lists  of  lists,  your  code  will  need  to  be efficient.

Your code must run for less than 10 minutes to pass the autograder. Each test in the autograder is limited to 30 seconds. The solution takes around 70 seconds to run the runner file (this time is beatable).




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图