代写MGT001371 - Scheduling Manufacturing Systems Homework Assignment II代做留学生Python程序

MGT001371 - Scheduling Manufacturing Systems

Homework Assignment II

To be submitted on 13.06.2024 (Thursday 13:00) via TUM Moodle.

Late submission will not be accepted. No collaboration!

• You must submit your handwritten or typewritten solutions in a single .pdf file and your codes in separate  .py files.

• You should zip (compress) all of your files and name the  .zip file as ”NameLast- name studentID”, i.e., ”BaharOkumusoglu 01234567.zip” .

•  Coding questions will be graded based on the result they generate and not the entire syntax.  If a particular code section does not work, zero points are given to that section. We try to give points for the outcome of individual code sections wherever possible but reserve the right to grade multiple sections together if necessary.

•  Be precise.  Do not make vague statements and leave any room for interpretation. You must also present your step-by-step solutions wherever applicable.

1.  (10 points)  Consider a car manufacturing company that operates a paced assembly line. Let us denote the sets of models, options and parts as M, O and P, respectively. The company can produce model m ∈ M with option o ∈ O and part p ∈ P.  We also define the set of production cycles and the set of stations at the production line as T and K, respectively. Suppose the company wants to determine the sequencing for its production line to avoid work overloads by solving different optimization problems. The problem parameters and decision variables are provided in Table 1.

Implement the following optimization models using the Python-Gurobi interface with the provided data using the code template Sequencing Template .py.  For each model, you need to write a function and call this function to get the optimal sequencing decisions. To avoid code repetitions, you should call the function BaseModel whenever required. Also, recall that variable indexing in Python starts from 0.

(a)  (3 points)  (Base Model) The function in your code should take a Gurobi model object as an argument and add the following constraints:

Parameters

dm Demand for copies of model m.

c Cycle time.

lk Length of station k.

pmk Processing time of model m at station k.

amo 1, if model m requires option o, and 0 otherwise.

pmo Demand of model m for part p.

rcp Target consumption rate of part p.

rcm Target production rate of model m.

Decision Variables

xmt 1 if model m is produced in cycle t, and 0 otherwise.

wkt Work overload occurring at station k in cycle t.

skt Start position of the worker at station k when cycle t begins.

ymt Total cumulative production quantity (in integer) of model m up to cycle t.

Table 1: Problem parameters and decision variables.

(b)  (3 points)  (Mixed-model Sequencing Model)

(c)  (4 points)  (Level-scheduling Model) Your function should take a flag as an argu- ment and use it in a conditional statement in order to solve the problem for part-oriented and model-oriented versions. Your function should create an optimization model with the following objective functions

for the part-oriented and the model-oriented models, respectively. Note that the feasible regions for both models are defined by (1) and the following set of constraints:

Hint: When defining a quadratic objective in the solver, you cannot use the expression x2 , instead, you should use x ∗ x.  As a rule of thumb, always use parentheses when there are summations for the quadratic expressions, i.e., Σi(xi) ∗ (xi).

2.  (4 points)  Consider the economic lot sizing problem with several items on a single machine under the sequence-independence assumption. Using the provided data with the code tem- plate ELS Template .py:

(a)  (2 points)  write a function basicESL that returns the cycle time, idle time, production run and maximum inventory for each item.

(b)  (2 points)  provide a detailed inventory level chart by indicating the necessary points at the chart.

3.  (12 points)  The capacitated lot-sizing problem with zero setup times can be formulated as a mixed-integer programming problem. Let N and T be the sets of items and periods, respectively. The problem parameters and decisions variables are given as follows:

Parameters

dit Deterministic demand for item i in period t.

P(¯) Production capacity for machine.

vit Production rate product i in period t.

hit Holding cost for item i in period t.

cit Setup cost for item i in period t.

Ii0 Initial inventory for item i.

Decision Variables

Iit Inventory for item i at the end of period t.

xit Production amount for item i in period t.

yit 1, if machine is setup for item i in period t, 0 otherwise.

zit 1, if item i is produced in period t, 0 otherwise.

Table 2: Problem parameters and decision variables.

Implement the following optimization models using Python-Gurobi interface with the pro- vided data with the code template ESL Template .py. For each model, you are supposed to use only one function ESLModel and call this function to get the optimal solutions. You should include conditional statements in this function such that some part of the function will run depending on the optimization model given by the following parts.   For  exam-ple, when you want to solve the optimization model (4), you should include a conditional statement if modelType == ‘bigBucket’ such that your function will ONLY create the optimization model for this model.

(a)  (5 points)  (Base Model, Big Bucket)

(b) (3 points) (Small Bucket, Continuous)

(c)  (4 points)  (Small Bucket, Discrete) In your function, you should not rewrite con- straint  (6b) as it is.   Instead,  you  should only add a single constraint that implies constraint (6b).

4.  (4 points)  Consider the robust sequencing problem discussed in class.  In the optimization model, there are some nonlinearities due to the constraints corresponding to the number of violations per option in failure scenarios and the length of evaluation windows.  Also, see ”Robust car sequencing for automotive assembly, A. Hottenrott, L. Waidner, M. Grunow, EJOR (2020)” .

(a)  (1 point)  Indicate and discuss the nonlinearities induced by these constraints.

(b)  (3 points)  For ease of notation, consider the following two constraints corresponding to the number of violations per option in failure scenarios and the length of evaluation windows:

Here, the decision variables are X {0, 1}, Y N, Z Z+   and N N.  Moreover, assume that the decision variable Z has a finite upper bound Z(¯) .  Linearize these con-straints by introducing auxiliary variables. Show your step-by-step solutions and write your final system of equations in the box below.  (Hint: First linearize the second con-straint by introducing Z(¯) many binary decision variables and replace the domain of the summation by (1, Z(¯)). Then, rewrite constraint by coupling these new variables and X variables. You should introduce more auxiliary variables in the rest of the exercise.)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图