代做ECN302, Advanced Macroeconomics Spring Semester 2023-2024代写数据结构语言

Department of Economics

Spring Semester 2023-2024

Module Code and Title of Module: ECN302, Advanced Macroeconomics

Submission deadline: Tuesday, 28th of May 2024, by 12 noon.

•    This coursework comprises three questions in total. Answer all questions. Each question has equal mark. The maximum mark for the coursework is 100.

•    Specific word limit is indicated by each question.

•    Formatting: please use double spaced text, Arial font size 12, minimum 2 cm margins.

•    If required, please follow Harvard Referencing Guide -

https://librarydevelopment.group.shef.ac.uk/referencing/harvard.html

•    To input Maths or figures you have two options. You can handwrite equations and produce an image of these (using a smartphone, digital camera or scanner) which can then be inserted into a Word document. Alternatively, you can use Word and the equation editor.

•    Coursework must be submitted online through Blackboard using Turnitin and by no later than 12.00 noon on the deadline. Coursework submitted after the 12.00 noon deadline will have a late penalty applied. Details about the late penalty policy can be found in the Student Handbook.

•    You must attach a submission template coversheet to the front of your work when

submitting it to Turnitin to avoid a 5% penalty. Full details of this policy can be found in the Student Handbook.

•    Please ensure that you have read the assessment guidelines provided in the Student Handbook, including the guidance about submission requirements, extension requests and extenuating circumstances and the use of unfair means.

Advanced Macroeconomics: Coursework

Consider a deterministic dynamic general equilibrium model for an economy populated by a large number N of identical individuals, each having the same preferences, receiving the same endowment of income in every period, and starting with the same level of asset holdings. Time starts in t=0 and the  economy terminates  in t=2. The  preferences  of the  representative individual  are  described  by  the  intertemporal  utility  function  U0   = ∑t(2)=0 β tu(ct ) ,  with β  = 1⁄(1 + p). In every period the representative individual faces the budget constraint ct  + at   = Yt  + (1 + rt )at - 1 . The initial asset holdings is given by a- 1   = 0. All variables and parameters have standard interpretation.

Question 1

Let rt  = p = r for t=0,1,2. Consider two different endowment allocations. The first is Yt  = YL  when t  = 0,2 and Yt  = YH  when t  = 1. The second is Yt  = YH  when t  = 0,2 and Yt   = YL  when t = 1. In both cases YH   > YL .

Derive the equilibrium allocation of consumption and assets under both types of endowment. Provide an economic interpretation of your results.

[max 650 words]

Question 2

Suppose that the financial market is contemplating the introduction of two alternative types of financial sanction. The first is: at   ≥ 0 for t  = 0. The second is: at   = 0 for t  = 0.

Provide an economic interpretation of each type of sanction. Explain how the two equilibrium allocations derived in Question 1 would change under each type of financial sanction.

[max 650 words]

Question 3

Suppose now that instead of all individuals in the economy being identical, there are two types in equal proportion. These two types differ only for their lifetime income allocation. The first type receives Yt  = YL  when t  = 0,1 and Yt   = YH  when t  = 2. The second type  receives Yt   = YL  when t  = 0, 1,2. As above YH   > YL  and both types of individuals can borrow and lend freely. Derive the equilibrium and provide its economic interpretation.

Consider next how fiscal policy can be used to achieve income equality among the two types in each period t and what are the macroeconomic implications of this type of policy [Hint: To this end you can assume that the government uses a proportional tax on income and derive the ‘optimal’ tax rate]. [max 700 words]





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图