代做158.739-2024 Semester 1 Assessment 3 and Assessment 4代写Python语言

158.739-2024 Semester 1

Assessment 3 and Assessment 4

Deadline:

Hand in by midnight June 2 2024

Project 3 Evaluation

100 marks (15% of your final course grade).

Project 4 Evaluation

100 marks (50% of your final course grade).

Work

This assignment maybe done in pairs.

If you are doing this project with someone else, state this clearly in your submission, together with a document that clearly specifies which tasks each person completed in the project.

Purpose:

Re-enforce and build on data wrangling skills learned so far. Learn how to implement the full process of data acquisition, data wrangling, data integration, data persistence using SQLite, and data analysis using Python.

Assessment 3 and 4 overarching outline:

The goal of these projects is the implementation of a full data analysis workflow using python with the combination of SQLite database persistence.

You are asked to preferably choose a problem domain that is aligned with your specialisation within the Master of Analytics (if relevant); otherwise, select a domain of interest to you. You may re-use some of the datasets from the previous assignment. Research what kinds of data sources are available for your selected domain. Subsequently, you are  asked to (1) formulate questions that you would like answered, (2) acquire datasets from at least two different sources (at least one source must be dynamic, i.e. is web-scraped or is retrieved from a web API), (3) wrangle the data into an usable format and perform. EDA, (4) integrate datasets into one, (5) persist the data into a SQLite relational database with a suitable schema, (6) perform. group-by queries, pivot tables, cross-tabulation of the data to answer your research questions, together with a rich set of visualisations.

Links to various dataset and web API repositories are provided on Stream. The analysis workflow you are asked to perform. is illustrated in the diagram below:

Assessment 4 Requirements:

Your research report must be in a Jupyter Notebook format and thus executable and repeatable. Clearly introduce your problem domain, articulate your research questions and provide an executive summary at the beginning. Follow the provided Jupyter notebook template.

You must document and explain the reasoning behind the coding steps you are taking and provide explanations of all your graphs and tables as is appropriate. Make sure you label all aspects of your graphs.

The activities listed under the five stages in the workflow diagram above are a guide only. This means that operations like group-by statements as well as pivot tables could be apart of the ‘Data Wrangling’ phase as EDA, and not only apart of the data analysis phase. Finally, please run your report through an external spell checker and feel free to use ChatGPT judiciously to help you as discussed in class.

Assessment 4 Marking criteria:

Marks will be awarded for different components of the project using the following rubric:

Component

Marks

Requirements and expectations

Data Acquisition

20

• Diversity of sources (at least one must be dynamic – full marks for using both

APIs and web scraping – penalties will be applied for re-using examples from class)

• Appropriate use of merging and concatenation.

Data Wrangling and EDA

30

• Quality of your EDA

• Appropriate use of visualisations

• Thoroughness in data cleaning

• Use of user-defined functions

Data Analysis

35

• Quality of the research questions being asked

• Diversity of techniques used to answer and present them

• Clear and structured presentation of findings

• Interpretation and communication of findings and visualisations

Originality and challenge

15

• Originality in problem definition and approach to the analysis

• Creativity in problem solving

• The degree of challenge undertaken

BONUS

Big Data Processing Techniques

5

• Demonstration of out-of-core processing

• Analysis of query performance issues and optimisations where necessary

Assessment 3 Specific Requirements:

Once you have completed the above components, your task now is to design a database (DB) schema that represents all the data that you have acquired from multiple sources in a normalised form, and to populate it using SQLite, thus achieving full data persistence.

The project requirements are as follows:

-      create a separate Jupyter Notebook for these tasks

-      create a simple DB schema document that shows the tables (aim for around half a dozen), their attributes and relationships that depict your design; use free software like DBSchema (https://dbschema.com/) to create a diagram and embed this image into the notebook

-      create an image file from the schema DB design document and embed it into your notebook

-      describe your DB schema at a high level

-     write all the database schema code for creating the necessary tables for SQLite DBs

-     read in all the data that you have prepared in the above project and which you have stored in various file formats (.csv and/or .xlsx) and populate your tables from the notebook

-     perform some analysis that requires extracting data from your DB; write at least six queries that require various table joins on your DB; these queries can replicate or be based on some of the analysis that you performed in the above project. You may also include some visualisations in the notebook.

-      create at least two DB Views which encapsulated queries from above and test them

Assessment 3 Marking criteria:

Marks will be awarded for different components of the project using the following rubric:

Component

Marks

Requirements and expectations

Schema Definition

35

• design of a DB schema document and its explanation

• creating half a dozen normalised tables that capture all the data

• use of correct data types for attributes

• definition of primary and foreign keys where appropriate

• definition of indexes where appropriate

• definition, implementation and explanation of constraints where necessary

DB Population

20

• automation of reading files from flat-files and writing data into SQLite tables

• performing checking that the data has been persisted in the SQLite DB

SQLite Queries

35

• complexity of queries (these should be much more than simple SELECT statements)

• diversity of queries

• readability and structure of the SQL code

• explanation of the queries and results

DB Views

10

• creation of two DB Views

• testing out the views

Hand-in:  Submit your zipped notebook(s) file together with your final datasets and SQLite database, via the  Stream assignment submission link.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图