代做ORBS7120 – Big Data Analytics and Visualisation代做Python编程

ORBS7120 - Big Data Analytics and Visualisation

Individual project instruction

1. Assessment structure

The individual project accounts for 80% of the module grade. Please choose one data set in the list below for your project. The length of the report should be of 3000 words, excluding references. All the relevant literature and resources for your project should be properly cited in the Harvard referencing style (you will find this website helpful). For your convenience,a template is provided here. Previous exemplars are available here.

Marks allocated to criteria:

Criteria

20%

1. Introduction to data and research question (~1000 words)

Please introduce the data set used and its background. The relevant literature (e.g., academic journal articles and textbooks) should be surveyed and properly cited with Harvard referencing style. More

importantly, please identify a problem to be addressed with this data set (i.e., the research question). Please note that the problem should be

specific (i.e., relevant in the application domain and linked to the variables available from the data set).

15%

2. Data processing and exploration (~500 words)

Please explain: Which variables are available from the data set? Which variables have been selected for the analysis and why? Any data

transformations have been done and why?

25%

3. Data visualisation and interpretation (~800 words)

Please provide at least three data visualisations as descriptive analytical results (e.g., properties of the variables selected) and advanced analytical results (e.g., relationships between the variables selected, machine

learning results). Please follow best practices taught in the module

regarding data visualization. Importantly, please interpret the results and findings with details. Note that the data visualisations should be nontrivial representations of information, yet easy to interpret.

20%

4. Data insights and conclusions (~700 words)

Please provide the insights drawn from the analytics and summarise the findings. In particular, is the problem (i.e., research question) identified at the beginning addressed by the analytics? How?

20%

5. Writing, styling and references

The clarity, logic and presentation of the report, including spelling,

grammar and punctuation. The general styling and references should be clear and consistent.

2. Recommended datasets

NOTICE: Before starting the individual project, you will need to confirm your choice of data

set withthis link on Moodle . The link will be available from Monday, April 29th 2024, 12:00 pm (UK time). Any submissions without data choice confirmation will have the marks reduced accordingly.

While the use of generative AI technologies such as ChatGPT could be helpful for learning  Python programming, it is important to note that employing it to produce any portion of a written report is strictly prohibited.

Please find a list of recommended datasets below. All of them are from

https://nijianmo.github.io/amazon/index.htmland have significant textual content (i.e.,

Amazon reviews). Therefore, text analytics tools should be employed. Please note that each dataset includes reviews (ratings, text, helpfulness votes) as well as product metadata

(descriptions, category information, price, brand, and image features), which are linked by product ASIN number. Depending on your device’s capacity, you might use the original

dataset or the alternative 5-core version (which is smaller and easier to be processed) . You

may also use the latest version of the dataset fromhttps://amazon-reviews- 2023.github.io/main.html, which covers a longer period until 2023.

Amazon review Amazon Fashion

•   Amazon review All Beauty

•   Amazon review Appliances

•   Amazon review Arts Crafts and Sewing

Amazon review Automotive

Amazon review Books

•   Amazon review CDs and Vinyl

Amazon review Cell Phones and Accessories

•   Amazon review Clothing Shoes and Jewelry

•   Amazon review Digital Music

Amazon review Electronics

•   Amazon review Grocery and Gourmet Food

Amazon review Home and Kitchen

Amazon review Industrial and Scientific

Amazon review Kindle Store

•   Amazon review Luxury Beauty

•   Amazon review Movies and TV

•   Amazon review Musical Instruments

•   Amazon review Office Products

•   Amazon review Patio Lawn and Garden

•   Amazon review Pet Supplies

•   Amazon review Software

•   Amazon review Sports and Outdoors

•   Amazon review Tools and Home Improvement

•   Amazon review Toys and Games

•   Amazon review Video Games

•   Others (please email to confirm)






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图