代做MATH2003J Optimisation in Economics SPRING TRIMESTER EXAMINATION - 2019/2020代写数据结构语言程序

SPRING TRIMESTER EXAMINATION - 2019/2020

MATH2003J Optimisation in Economics

1. (a)  Determine whether each of the following statements is True or False. No explanation is needed when answering 1(a)(i) to 1(a)(v).

(i)  Let p be a critical point of a twice diferentiable function f : Rn Y R.  If det(H(p)) = 0, where H(p) denotes the Hessian matrix of f, then f has a saddle point at p. [1]

(ii) The following is a linear programming problem:

Maximize z = 2x1 - x2  subject to

x1 +2x1x2 -10

3x1(2) +5x2 18

x1, x2 ≥ 0                                      [1]

(iii) The set S = [2, 5] n {8} is convex. [1]

(iv)  If we solve the non-linear programming problem of maximizing f(x, y, z) subject to two diferent constraints g1 (x, y, z) c1  and g2 (x, y, z) c2 using the Kuhn-Tucker method, we have to consider 4 diferent cases. [1]

(v)  Let S Rn be a convex set.  It is possible for a function f : S Y R to be neither concave nor convex on S. [1]

(b)  Determine whether each of the following statements is True or False.

Briefly justify your answers to questions 1(b)(i) to 1(b)(v).

(i) There is no solution to the optimization problem:

Maximize z = f(x, y) subject to

x +2y 1

2x +3y 6

x,y ≥ 0.              [3]

(ii) The set S = {(x, y) e R2  : 4x2  +9y2 36, x 0} is bounded. [3]

(iii)  Let S = {(x, y) e R2   : g1 (x, y) c1 , g2 (x, y) c2 , g3 (x, y) c3 } be a set in R2  where g1 (x, y) c1 , g2 (x, y) c2   and g3 (x, y) c3  are linear inequalities. Then S is always bounded. [3]

(iv)  Let f : S Y R be defined by

f(x, y) = 2y - 5x2 - 4xy - y2

where S = {(x, y) e R2   : x2  + y2 100} is a convex set.  Then f is convex on S. [3]

(v) This question refers to 1(b)(iv). The function f has a maximum at (-2, 5) on S. [3]

2. In this  question, please substitute T by your  UCD Student ID. For example, if your UCD Student ID is 12345678, then T = 12345678.

(a)  Let f : R3 R be the function

f(x, y, z) = x2 4x + xy2 + yz2 + z2 .

(i)  Determine whether (T, 0, , 1, 3) are critical point(s) off. [4]

(ii)  Classify the nature of the critical point(s) obtained in 2(a)(i). [9]

O(b)Use the graphical method to maximize f(x, y) = 2x +3y subject to

x + y 10

2x + y 18

x +2y 16

x, y 0. [7]

3. Solve the following linear programming problem by the simplex method:

Minimize z = 5x1 2x2  subject to

2x1 + x2 21

x1 +2x2 18

x1 , x2 0. [20]

4. (a)  Consider the following linear programming problem:      Maximize z = 8x1  +7x2  subject to

x1 + x2 10

2x1 + x2 18

x1 , x2 0.

(i)  Solve the above problem with the simplex method.

(ii)  Formulate the dual problem.

(iii)  Determine the optimal solution to the dual problem from tableau of the original problem.

(b) A shampoo company manufactures shampoo A and shampoo B. Each litre of shampoo A sells for €8 and each litre of shampoo B sells for €7.  The production and sales of both items involve labour and herbs. The constraints of each of these resources is illustrated in the table below.

Resource

Shampoo A

Shampoo B

Total availability

Labour

Herbs

1 time unit

2 units

1 time unit

1 unit

10 time units

18 units

The owner of the company wish to determine the combination of production of shampoo A and shampoo B that will maximize the company’s revenue.

(i)  Let t1  and t2  represents the working time of labour and amount of herbs respectively.   Determine the values of t1  and t2   required to maximize the company’s revenue. [2]

(ii)  By using the results in 4(a), or otherwise, find the shadow price of the labour per time unit and the shadow price of the herbs per unit. [2]

5. Let f : R2 R be defined by f(x, y) = 4x2 y2  + 5 and consider the constraints x2 + y2 4    and x 1.

(a)  Sketch the feasible set  in the  plane  and explain why f attains extrema

(maximum and minimum) subject to the above constraints. [4]

(b)  Use the  Kuhn-Tucker  method to find the  maximum and the minimum of f subject to the above constraints. [16]





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图