代写FIT5212 - Assignment 2帮做Python编程

FIT5212 - Assignment 2

Marks

Worth 100 marks, and 25% of all marks for the unit

Due date

Week 12 Lecture Date, 11:55 pm

Extension

An extension could be granted under some circumstances. A special consideration application form. must be submitted. Please refer to the university webpage for special consideration.

Lateness

For all assessment items handed in after the official due date, and without an agreed extension, a 10% penalty applies to the student’s mark for each day after the due date (including weekends) for up to 7 days. Assessment items handed in after 7 days without special consideration will not be considered.

Authorship

This is an individual assessment. All work must be your own. All submissions will be placed through Turnitin. This makes plagiarism remarkably easy to identify for us.

Submission

Submission is 4 files:

● one CSV file (for predictions),

● one PDF discussion report (including discussions),

● one Jupyter notebook,

● one PDF generated directly from the Jupyter Notebook without cell output for the whole assessment.

The files must be submitted via Moodle. All files will go through Turnitin for plagiarism detection.

Programming Language

Python in Jupyter Notebook

Task 1: Recommender System Challenge

Description:

You are required to complete a FIT5212-specific challenge in Kaggle

https://www.kaggle.com/t/669b003cc29046398e6a3642308d0273

The data was collected by crawling the Amazon website and contains product metadata and review information about 219,859 different products.

The user-item interaction data is the main data for this challenge. This data is further split into training and test sets.

●    train.csv. The training dataset contains a set of user_item ratings between users and items. The users explicitly rated the items that they interacted with between 1 to 5.

●    test.csv. Each user is provided with a list of items in the test dataset, for each user, you will need to predict the ratings for all the items in their list.

The train dataset contains the following information:

●    ID: an arbitrary ID for a row (does not contain any information)

●    user_id: the id assigned to each user

●    product_id: the id assigned to each product

●    product_name: the name of the product

●    rating: the explicit rating of a specific product_id by a user_id ranging from 1 to 5

●    votes: the number of votes for a particular rating

●    helpful_votes: the number of people that found the rating helpful

Example: The row below shows that the user with ID "1813" gave a rating of "5" to the product with  ID "154533". The product is titled "Beautiful Thing". This rating received 10 votes, and 8 out of those 10 people found the rating helpful.

The test dataset contains the following information:

●    ID: an arbitrary ID for a row (does not contain any information). Avoid making any changes to this column as it is the main identifier when we mark your submission.

●    user_id: the id assigned to each user

●    product_id: the id assigned to each product

●    product_name: the name of the product

Your task is to develop a recommender system by training it on the provided train set. Once the system is trained, you will use it to generate predicted ratings for each user-item pair present in the test set.

Submission:

For every user-item pair in the test set, you need to provide a predicted rating. The submission file should contain only two columns: ID and rating.

The file should contain a header and have the following format:

Requirements:

1.   Participate in the challenge and make your submission. The maximum submission in Kaggle is 10 submissions per day.

2.   This is an individual assignment. You have to finish it on your own.

3.   In addition to the challenge, you have to finish a report on this challenge and submit it to Moodle.

Submission:

To Kaggle

●    Kaggle submission, you need to submit your predictions on the test dataset on Kaggle.

To Moodle:

1.  A csv file, “studentID.csv”.  Please  replace student ID with your own student ID. The content should be the same as the best prediction file you have submitted to Kaggle. This file should be submitted i  Moodle. We will double-check the files you have submitted to Kaggle and Moodle. If the two files are not the same (i.e., the file submitted to Moodle cannot get the same score in Kaggle), your result is invalid, and you will fail the assignment.

2.  A jupyter notebook, “code_studentID.ipynb” . This notebook contains the code for Task 1. The notebook should be self-contained. If a third-party package is used, this package should be a well-known package and easy to install (e.g., install within a single command). This notebook should include both codes and outputs so that we can read and mark them.

3.  A pdf file, “code_stduentID.pdf”. This pdf is generated by cleaning all the output in the Jupyter Notebook and exporting it as a pdf file. This pdf will be passed in Turnitin for plagiarism check.

4.  A pdf report, “report_stduentID.pdf”. This pdf contains a more detailed analysis of the work. This file should show how you finished the task. Ideally, you should show what sort of algorithms you  have considered, what  kind of information you have used, and the reason for your choice of the corresponding algorithm to achieve the results you submitted to Kaggle. Comparison for different algorithms should be included in this pdf report. And detailed analysis of the results is encouraged. If you have used other algorithms/packages which are not covered in this unit, you should give a brief introduction to that algorithm/package. We expect the length of this report to be between 8 to 10 pages excluding references. This pdf will be passed in Turnitin for plagiarism check.

Marking:

The Kaggle leaderboard only shows your scores on 50% of the test data. Your final score will be marked based on your CSV file submitted to Moodle for the whole test dataset.

●   The methodology and report are set to 50% marks and the prediction score accounts for 50%  marks. So please prepare a good report and clearly describe your method to achieve the marks.

See the marking rubric on Moodle for more details.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图