代写COMP3027 & COMP3927 Algorithm Design Assignment 4 s1 2024调试Haskell程序

Algorithm Design

Assignment 4

s1 2024

This assignment is due on May 15 and should be submitted on Gradescope.   All submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

As a first step go to the last page and read the section: “Advice on how to do the assignment” .

Important: This assignment is for all COMP3x27 students. COMP3027 students should do Problems 1 and 2 while COMP3927 students should do Problems 1, 2, and 3.

Background.  Wow!  Go-karting sure was fun.  However, you had an unfortunate encounter with Truck-kun and find yourself isekai-ed into Dune, of all places. Luckily, you’re at least a mid-ranking official in the Arrakis administration so your new life isn’t too bad.  You get to work in plotting to depose your rivals in power.

Problem 1. (40 points for COMP3027, 30 points for COMP3927)

One of your rivals is an official managing spice mining. In this version of Arrakis, spice is mined from deposits and transported in pipelines.  To get rid of your rival and take over the area under their control, you’ve obtained control of a space laser and want to find out how much damage we can possibly do to their pipelines.  However, the controls of the laser are a bit hard to use, and you can only program it to draw a loop around nodes in the transport network. Furthermore, the laser manual warns you that if you blow up an odd number of pipelines, this will anger the sandworms and they’ll go berserk, destroying everything on Arrakis.

Formally, the problem is that there’s an undirected network (V, E) of n nodes, where each undi- rected edge has an integer weight w (u, v) = w (v, u) > 0 (and if there is no edge between u, v then w (u, v) = 0).  We want to choose a cut such that the nodes are divided into sets S, T, where the capacity of the cut Σu S,v Tw(u, v) is maximised, with the further condition that the number of S-T edges (u, v) ∈ E (where u ∈ S, v ∈ T) is even.

a)  Define the decision version of this problem.

b)  Prove that this decision problem is in NP.

c)  Prove that this decision problem is NP-Complete.

d) Conclude that the original search problem is NP-Hard.

Problem 2. (60 points for COMP3027, COMP3927)

You’ve successfully removed your opposition and are now the pipeline manager for Arrakis. You think there is a new opportunity for efficiency by combining the spice distribution network and the water distribution network. Of course, you can’t transport both water and spice in the same pipeline, so this might limit your efficiency gains. How much more efficiency can we gain from this change?

Formally, we have a directed network (V, E) on n nodes, including two sources and one sink, s1, s2, t ∈ V. Each directed edge (u, v) has a capacity c (u, v) ∈ Z ≥0, and we have two flows f , g : V × V → Z 0. We have the usual flow conservation and capacity constraints for f  and g individually, with the additional constraint that for each edge, at least one off(u, v) and g(u, v) is 0. Furthermore, for all vertices v  ∈ V \ {s1, s2}, g(s1, v)  = f(s2, v)  = 0, i.e.  s1  only supplies f-flow and s2  only supplies g-flow. Finally, we want to maximise the combined flow into t, i.e.  ΣV(f(v, t) + g(v, t)) is maximised.

a)  Define the decision version of this problem.

b)  Prove that this decision problem is in NP.

c)  Prove that this decision problem is NP-Complete. Hint: 3-SAT might give a good reduction here. d) Conclude that the original search problem is NP-Hard.

Problem 3. (10 points) (COMP3927 only)

NP-hardness can’t stop you!  If only half the maximum possible flow gets through at any time, that’s good enough for you.  (You don’t need to be the best at your job, you only need to remove anyone who could possibly take over.) Come up with an algorithm that saves you some effort.

Formally, again we have a directed network (V, E) on n nodes, including two sources and one sink, s1, s2, t ∈ V. Each directed edge (u, v) still has a capacity c (u, v) ∈ Z ≥0, and we still have two flows f , g : V × V → Z 0. We again have the usual flow conservation and capacity constraints for f and g individually, with the additional constraint that for each edge, at least one off(u, v), g(u, v) is 0. Furthermore, for all vertices v ∈ V \ {s1, s2}, g(s1, v) = f(s2, v) = 0, i.e. s1  only supplies f-flow and s2 only supplies g-flow. Maximise the combined flow into t, i.e. ΣV(f(v, t) + g(v, t)).

a)  Develop an algorithm that is a 1/2-approximation to this optimisation problem.

Hint: Dont overthink this.

b)  Prove its correctness.

c)  Analyse its running time.

Advice on how to do the assignment

• Assignments should be typed and submitted as pdf (no pdf containing text as images, no handwriting).

• Start by typing your student ID at the top of the first page of your submission.  Do not type your name.

 Submit only your answers to the questions. Do not copy the questions.

• When asked to give a plain English description, describe your algorithm as you would to a friend over the phone, such that you completely and unambiguously describe your algorithm, including all the important (i.e., non-trivial) details.  It often helps to give a very short (1-2 sentence) description of the overall idea, then to describe each step in detail. At the end you can also include pseudocode, but this is optional.

• In particular, when designing an algorithm or data structure, it might help you (and us) if you briefly describe your general idea, and after that you might want to develop and elaborate on details. If we don’t see/understand your general idea, we cannot give you marks for it.

• Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for "your worst answer", as this indicateshow well you understood the question.

• Some of the questions are very easy (with the help of the slides or book).  You can use the material presented in the lecture or book without proving it.  You do not need to write more than necessary (see comment above).

 When giving answers to questions, always prove/explain/motivate your answers.

• When giving an algorithm as an answer, the algorithm does not have to be given as (pseudo- )code.

• If you do give (pseudo-)code, then you still have to explain your code and your ideas in plain English.

• Unless otherwise stated, we always ask about worst-case analysis, worst case running times, etc.

• As done in the lecture, and as it is typical for an algorithms course, we are interested in the most efficient algorithms and data structures.

• If you use further resources (books, scientific papers, the internet,...) to formulate your answers, then add references to your sources and explain it in your own words.  Only citing a source doesn’t show your understanding and will thus get you very few (if any) marks. Copying from any source without reference is considered plagiarism.






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图