代做COMP4424/COMP5424 IT in Biomedicine Assignment 2代做留学生Python程序

IT in Biomedicine

(COMP4424/COMP5424)

Assignment 2

1. MIC Module Development

1.1   Summary Information

•  This assignment is worth 20% of your final assessment.

•  The mark of "COMP4424/COMP5424 Assignment: Medical Image Computing Module Development" will be given based on the file submitted on Canvas:

–  Canvas Submission [Due Date] 23:59 p.m. on 20 May, 2024 (Monday, Week 13).

•  Skeleton Code and Sample Data can be downloaded from the assignment page on Canvas. It is very important for you to download Skeleton Code first, as for your convenience, the  connection setup between Python and 3D slicer has been completed within the Skeleton Code  already. Within the Skeleton Code, there exist some empty blocks marked with comments  (between #Add your code below# and #Add your code above#), where you should fill in  your assignment code. Meanwhile, you should not modify any other completed parts of the  Skeleton Code.

•  Submission Deliverables

 You are asked to create a zip file of all deliverables, including the source code, image generated and technical report. Your assignment will only be marked if all deliverables can be accessed from the Canvas System, and they can be runnable from a Slicer with version 4.10.

 Your copy should include an Assignment Title Page, which can be downloaded from:

http://rp-www.it.usyd.edu.au/current_students/undergrad/guidelines/assignment_ sheet_individual.pdf

–  Late submission will not be accepted and a zero mark will be given.

1.2 Introduction

1.2   Introduction

Medical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine.  This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. Within the MIC domain, there are three essential medical image analysis techniques, namely, medical image enhancement (MIE), medical image segmentation (MIS) and medical image registration (MIR). The fundamental ideas and practices, regarding MIE, MIS and MIR, have been taught and deployed in this unit of study, from week 5 to week 7.

1.3   COMP4424/COMP5424 Assignment 2: Medical Image Computing Module Development

In this assignment, you will build a fundamental MIC platform. to perform. three individual tasks on the sample data provided and observe the effects achieved by MIE, MIS and MIR respectively. To complete this assignment, you are expected to use 3D slicer with the programming skills learnt from this course, based on the skeleton code and sample data provided on Canvas.

R   For programming related tasks (Task A and Task B), you are suggested to remove all irrelevant module loading paths before you start to do these tasks. Additionally, please wait for your code to be processed, your Slice interface may be frozen as it may take some time to run your MIE and MIS code completely. Note: ideally your program should only take seconds to run, if you found your program needs longer time to run, it is possibly that you are not implement your methods efficiently (e.g., not using numpy functions to do the calculations, writing too many loops which are not necessary, and etc.).

1.3.1   Task A: Medical Image Enhancement (MIE)

R     Key Information:

•  Sample Data: Task A / MRHead.nrrd

•  Skeleton Code: Task A / MedicalImageEnhancement.py

•  Coding Deliverable: Completed solution code (MedicalImageEnhancement.py)

•  Report Deliverable: Corresponding section in the technical report, including the demon- stration of the results of 3D convolution performed with the (1) smoothing, (2) sharpening  and (3) edge detection filters.

You are expected to program an image filtering algorithm with Python, which performs a convolution on the 3D volume MRHead.nrrd. The filters to be used, include the smoothing (already implemented in the code given), sharpening and edge detection filters. Please refer to the lecture slides for the details of the image filtering algorithm. The skeleton code can be found in Canvas.

1.  Load data MRHead.nrrd to Slicer.

2.  Import the source code ‘MedicalImageEnhancement.py’ to Slicer. Then restart Slicer, and find this ‘Task A - MIE’ module in ‘Assignment’ .

3.  Open source code  ‘MedicalImageEnhancement.py’ and implement your solution.  Some instructions and tips are provided in the source code.

4. After modifying your code, save it and then click on the ‘Reload’ button to reload the module, so you don’t need to restart Slicer. 


5.  Change the layout to displace Red Slice only. Superimpose theMRHead ontoMRHead_filtered, and then change the opacity to see the difference between them.



1.3.2 Task B: Medical Image Segmentation (MIS)

R     Key Information:

•  Sample Data: Task B / MRBrainTumor.nrrd

•  Skeleton Code: Task B / MedicalImageSegmentation.py

•  Coding Deliverable: Completed solution code (MedicalImageSegmentation.py)

•  Report Deliverable: Corresponding section in the report, including (1) the demonstration of the 3D segmentation result of the tumor, (2) the demonstration of the experiments on different global and local parameters combinations and (3) the best global and local parameters found for this segmentation task.

Region-growing algorithm can perform medical image segmentation task via delineating ROIs  iteratively. Recall the dual-checking 2D region growing algorithm from the tutorial content of week 6, this task requires you to further extend the dual-checking region growing algorithm to the 3D  version with Python. Skeleton code and sample data for this task can be found in the files provided.

1.  Load ‘MRBrainTumor.nrrd’ from the files provided. Use ’Editor’ module to draw a single dot in the slice which tumor has a clear boundary.

2.  Import the source code ‘MedicalImageSegmentation.py’ to Slicer. Then restart Slicer, and find this ‘Task B - MIS’ module in ‘Assignment’ .

3.  Open source code  ‘MedicalImageSegmentation.py’ and implement your solution.  Some instructions and tips are provided in the source code.

4. After modifying your code, save it and then click on the ‘Reload’ button to reload the module, so you don’t need to restart Slicer.

5.  Click ‘Apply’ to see the results.   Tune the global and local parameters to find the best segmentation result.

 



Here are some hints for you to complete task2:

•  Try to run one iteration first by adding a breakin the ‘grow_from_seed’ function to stop the algorithm at certain iteration to check if the result is expected.

•  If you want to start the assignment based on Week 6’s solution, you should think about how to redesign the ‘find_new_voxels’ function to make it more efficient, depending on how you implement ‘find_new_voxels’ function, the time spent to run the algorithm for the whole 3D brain image will be different and you may experience a slicer ‘no responding’ period if your implementation is not efficient.



1.3.3   Task C: Medical Image Registration (MIR)

R     Key Information:

•  Sample Data: Task C / SubjectA_T1, SubjectA_T2, SubjectB_T1, SubjectB_T2.

•  Output Deliverable: Generated solution NRRD image (SubjectB_T2_registered.nrrd)

•  Report Deliverable:  Corresponding section in the technical report, including (1) the  demonstration of the registered brain images using at least two clearly-explained reg- istration paths and (2) the demonstration of the registration results (by overlaying Sub- jectB_T2_registered.nrrd on SubjectA_T1).

Rigid, affine and non-linear registration are the most commonly-adopted approaches within the  MIR domain.  This task requires you to use rigid and nonlinear registration methods to perform  two-step registrations on two structural MRI datasets acquired on two different subjects (Subject A  and Subject B). Each subject would contain two brain images, one T1 brain image (‘SubjectA_T1’ and ‘SubjectB_T1’) and one T2 brain image (‘SubjectA_T2’ and ‘SubjectB_T2’). This task does not  involve python programming. The demonstration of the data is shown below : 


Your task is to treat SubjectA_T1’ as your registration target and register SubjectB_T2’ to the same space of ‘SubjectA_T1’ . To achieve that, you should :

•  Carry out the intra-subject registration (same subject, different modalities) using affine regis- tration;

•  Carry out the inter-subject registration (different subjects, same modality) using nonlinear registration.

•  Remember to save the intermediate registration result, for your convenience.



The built-in module required for completing this task is "General Registration (BRAINS)" in Slicer. The recommended settings of parameters for the affine and non-linear registrations, are given in the images below (please zoom in to gain a clearer view), meanwhile you are also encouraged to explore your own parameter settings to achieve a better registration result.

You should save your output image as SubjectB_T2_registered.nrrd ’.

Acceptable registration results will align the bio-landmarks in the brains among different subject- s/modalities. One obvious bio-landmark, in this case, is the ventricle, which is marked in red in each subject in the sample registration outputs below (the sub-figures are ’SubjectA_T1’ and three registration results achieved on the same space of ’SubjectA_T1’) :



Hints: There could be more than one registration path available, and your task is to find the most appropriate path, which obtains the best registration result. You could check your registration results by overlaying the output on the target image. Acceptable registration result will align the ventricle in both images, as shown below (which is also shown as the bottom-right sub-figure in the previous image).


1.3.4   Technical Report

You are required to write a technical report for all corresponding sections in this assignment. Please refer to the Key Information - Report Deliverable in each task above to double-check the contents to be included in your technical report. You should use the following formatting for the technical report:

1.  Number of pages - At most 10 pages.

2.  Captions - Captions are requested for any figures presented in the report.

3.  Page Formatting:

•  page size: A4;

•  line space: 1.5 lines;

•  font size: 12;

•  font name: Times New Roman;

•  margin: 2.5cm in all direction




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图