代写QBUS2820 Assignment 2代写Python语言

QBUS2820 Assignment 2 (30 marks)

May 7, 2024

1 Background and Task

The Consumer Price Index (CPI) is a measure that examines the weighted average of prices of consumer goods and services, such as transportation, food, and medical care.  It is calculated by taking price changes for each item in a predetermined basket of goods and averaging them. Changes in the CPI are used to assess price changes associated with the cost of living. The CPI is one of the most frequently used measures of inflation and deflation.

In this project, your task is to develop a predictive model to forecast CPI of a particular sector given its historical quarterly values.  The CPI dataset CPI_train.csv contains the quarterly CPI data from Jan 1990 to Dec 2019 (120 data points). This data set is based on a real CPI dataset with some added noise for the de-identification purposes. The test data set CPI_test.csv (not provided) has the same structure as the training data, and contains the quarterly CPI data from Jan 2020 to Dec 2021 (8 data points).

Your task is to develop a predictive model, using CPI_train.csv, to forecast the quarterly CPI measures from Jan 2020 to Dec 2021. Note that, this is a multiple-step-ahead forecast problem.

Test error

For the measure of forecast accuracy, please use mean squared error (MSE). The MSE, computed on the test data, is defined as follows. Let be the h-step-ahead forecast of y T+h, based on the training data y1:T, where y T+h  is the h-th value in the test data CPI_test.csv. The test error is computed as follows


where 8 is the number of observations in the test data.

2    Submission Instructions

1. You   need   to   submit,   via   the   link   in   the   Canvas   site,    a   Python   file,    named SID_implementation.ipynb (SID is your student ID) that implements your data analysis procedure and produces the test error. You might submit additional files that are needed for your implementation, the names of these files must follow the same format SID_xxx.

2. In addition, please submit a csv file, named CPI_forecast.csv, that lists the 8 CPI forecast values made by your final predictive model.

3. The Python file is written using Jupyter Notebook, with the assumption that all the necessary data files (CPI_train.csv and CPI_test.csv) are in the same folder as the Python file.

• If the training of your model involves generating random numbers, the random seed in SID_implementation.ipynb must be fixed, e.g. np.random.seed(0), so that the marker expects to have the same results as you had.

• The Python file SID_implementation.ipynb must include the following code import pandas as pd

CPI_test = pd .read_csv( ✬CPI_test.csv ✬ )

# YOUR CODE HERE: code that produces the test error test_error

print(test_error)

The idea is that, when the marker runs SID_implementation.ipynb, with the test data CPI_test.csv in the same folder as the Python file, he/she expects to see the same test error as you would if you were provided with the test data.  The file should contain sufficient explanations so that the marker knowshow to run your code.

• You are free to use any methods and Python libraries to implement your models as long as these libraries are be publicly available on the web.

4. The Jupyter Notebook should comprehensively describe your data analysis procedure.  It should provide detailed insights so that fellow data scientists, who are expected to possess background knowledge in your field, can understand and replicate the task. The presenta- tion in the Jupyter Notebook contributes to the total mark of this assignment. Please en- sure that the Notebook maintains readability with well-structured sections and subsections, effectively utilises markdown cells to elucidate the code, incorporates suitable visualisations, and follows best practices for clarity and coherence.

3 Marking Criteria

This assignment weighs 30 marks in total.  The prediction accuracy contributes 15 marks; the presentation of the Jupyter Notebook and the description of your data analysis procedure (see Section 2.4) contribute 15 marks. The marking is structured as follows.

1. The accuracy of your forecast: Your test error will be compared against the smallest test error among all students. The marker first runs SID_implementation.ipynb

• Given that this file runs smoothly and a test error is produced, the 15 marks will be allocated based on your prediction accuracy, compared to the smallest MSE produced by the best student, and the appropriateness of your implementation.

• If the marker cannot get SID_implementation.ipynb run or a test error isn’tproduced, some partial marks (maximum 5) will be allocated based on the appropriateness of SID_implementation.ipynb.

2. The 15 marks for the Notebook presentation and the description of the data analysis proce- dure are allocated based on

the readability of the Notebook;

the appropriateness of the chosen forecasting method;

the details, discussion and explanation of your data analysis procedure.

3. Late submission: The late penalty for the assignment is 5% of the assigned mark per day. The closing date is the last date on which the assessment will be accepted for marking. Due to the stringent timeline for this assignment, extensions can only be granted for genuine reasons.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图