代写MA2608: MATHEMATICS OF DEEP LEARNING代做R编程

MA2608: MATHEMATICS OF DEEP LEARNING, 70% MAJOR PROJECT  (2023–24): MNIST

In this assignment you will have the opportunity to demonstrate your proiciency in:

. implementing and training a deep learning network for handwritten digit recognition . classifying digits according to whether or not they belong to your student ID

. detailing true and false positives as a function of a decision threshold

. producing a written report detailing your achievement

. producing a recorded audio-video presentation showcasing your work.

The requirements for this assignment fall into four main deliverables: CODE; PDF; MP4 and ROC, all as detailed below.  The grades awarded depend strongly on the quality of your sub- mission across these deliverables. You are strongly advised to base your submission on the code ann08demo.m and to absorb the relevant material from ann09demo.m.

From MATLAB Grader Assignment 7 on Brightspace use your student ID to obtain your person- alized data consisting of positive integers Nh, Nep, learning rate, u, vand w. This step carries no marks but it will be recorded: zero participation = zero marks.

This submission has three components: a MATLAB source ile (which must be suitable for direct loading into MATLAB — a template is provided on Brightspace); awritten report (in PDF); and an audio-visual presentation in an MP4 audio-video ile.  A discussion of how to use Teams for this is footnoted. The brief and requirements for each component are now given, with the Grade Descriptors following.

. . . CODE: Obtain  the skeleton source code  annIDtemplate.m and the training and testing datasets MNIST_train_1000.csv and MNIST_test_100.csv from the Brightspace assign- ment page.  Rename annIDtemplate.m to ann#######.m with the hashes replaced by your Brunel student ID. This is the MATLAB ile you should populate with your responses to this assignment and then submit.

In what follows you should use the sigmoid activation function on all layers, and total squared error (TSE) as the performance index.

1. Alter ann08demo.m or ann09demo.m so that it trains and tests using the data sets referred to above and produces a single scalar output.  The y_train and y_test arrays should contain 1 (for Positive, P) if the corresponding input digit is in your student ID, and 0 (for Negative, N) if not. There should be Nh neurons (or nodes) on the hidden layer and you should use Nep epochs. This entire code should be in the function ann1HL in the annID.mile.

2. Evaluate the trained network’s predictions on the test data by specifying a decision threshold, t ∈ (0,1), such that an output y is considered positive (P), the input belongs to your ID, if y > t, and negative (N) otherwise. The user should be able to choose between heuristic unscaled back propagation and calculus-based back propagation (e.g. by setting the variable bp).

3. Enhance this code by increasing the number of hidden layers to three with theirst layer con- taining u neurons, the second containing v neurons and the third containing w.  Place this new code in the function ann3HL in the annID.mile. This code should also implement the decision threshold and have the backprop choice enabled.

. . . PDF: The written report should consist of a cover page plus no more than ive additional A4 sides, be written in English with in a font size of no less than 10 point, and have margins of no less than 2cm all around.  The report may be handwritten or typed but it should be well- structured and legible. Alligures must be included in the body of this report.

1. Give complete mathematical descriptions of your three and ive layer neural networks.  This should not be a code listing, but should use proper mathematical notation. You should detail the back propagation methods used — but you do not need to derive the formulae.

2. Give tables showing the True Positive Rate, TPR  =  TP/P, and False Positive Rate FPR  = FP/N, for each of the thresholds t ∈ {0.25,0.5,0.75}. This should be done for heuristic unscaled backprop as well as calculus-based backprop for both the three andive layer networks.

3. Give the plots that you generated in the ROC task. These should be well annotated and cap- tioned with an appropriate legend.

4. Comment on this use of TPR and FPR as a means to determine the quality of the classiier. Comment on the concept of ‘AUC’, and give the values.

. . . ROC (for Receiver Operating Characteristic): For each choice of backprop, and each network (3 or 5 layer) plot, on the same axes, the TPR vertically against the FPR horizontally for the deci- sion threshold varying as t ∈ (0,1) — you can use a discrete range and interpolate with straight lines.  Each of these four curves is called a ROC curve.  In each case calculate (using a suitable quadrature rule) the Area Under the Curve, or AUC.

. . . MP4: The audio-visual presentation should be no longer than 5 minutes (be accurate and concise). The presentation should contain the following.

1. An introduction in which you appear live and which contains a clear picture of your student ID card. This is to verify authenticity of authorship and is not optional.

2. A screen share showing your report and code (as submitted). You should go through your re- port and cross reference it to your MATLAB ile. You should explain where and how the algorith- mic and mathematical details are implemented in the code. You must cover forward propagation, back propagation, gradient descent and performance index (TSE).

3. A screen share where you show and discuss how you obtain the TPR and FPR results.  You should also explain where and how you calculated the AUC.

All components of your project should be submitted on Wise Flow by or before 10:00amUK Time

(strict) on 21 June 2024. NOTE: after 10:00am will be a late submission.

Misconduct in assessment is taken very seriously by the University. You are expected to abide by Senate Regulation 6 - Student Conduct (Academic and Non-Academic), which can be found here:

https://www.brunel.ac.uk/about/administration/governance-and-university-committees/senate-regulations. Advice on understanding what plagiarism and collusion are and how they can be avoided can be found here:

https://www.brunel.ac.uk/life/library/SubjectSupport/Plagiarism.  Further, the current univer- sity guidelines on the use of AI in academic work are here:

https://students.brunel.ac.uk/study/using-artificial-intelligence-in-your-studies. You should familiarise yourself with all of these requirements and guidelines.

Grade Descriptors: to achieve agrade in the range of an . . .

E (30-39%):  you will have submitted a MATLAB code (following the supplied template) which has content clearly evidencing an attempt to meet requirement 1 in CODE.

D (40-49%): you will have achieved at E grade level, with that version of your code being substantially correct, and also having content clearly evidencing an attempt to meet requirement 2 in CODE. In addition you will have submitted a written report which has content clearly evidencing an attempt to meet requirement 1 (for three layers) in PDF.

C (50-59%): you will have achieved at D grade level, with that version of your report being substantially correct and complete, and with content clearly evidencing an attempt to meet requirements  1 and 2 in PDF in full.  Your code will run and have content clearly evidencing an attempt to meet requirement 3 in CODE. In addition you will have submitted a video presentation which has content clearly evidencing an attempt to meet requirements  1 and 2 in MP4.

B (60-69%): you will have achieved at C grade level and that version of your code should run, be substantially correct, with only minor errors, and meet all requirements in CODE. Your report will be complete, with only minor omissions and/or typos, well structured, with good grammar and layout.  Your presentation, while not perfect, will substantially address both of requirements 1 and 2 in MP4.

A (70-89%): you will have achieved at B grade level. Your code, report and presentation will have substantially and cogently met all requirements, with speciic grading depending particularly on your response to those requirements in and relating to ROC. Conceptual, implementation or reporting errors should be of very high quality in terms of content and form, containing no more than minor errors which in noway detract from the overall impression of comprehension and achievement.

A* (90-100%): Every aspect of your submission will be complete, correct and of near or full professional quality.  It will meet all requirements in full.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图