代做INF6028 Coursework 2022/23 Mining and Evaluating a Structured Dataset代做留学生SQL语言程序

INF6028 Coursework 2022/23

Mining and Evaluating a Structured Dataset

1. Introduction

The assessment for INF6028 Data Mining consists of a single piece of individual coursework to assess your ability to understand key data mining, analysis and evaluation concepts. You will be assigned a single dataset with an associated data mining problem to solve (e.g., aregression problem). You should first use  data exploration techniques to explore the data, conduct appropriate data preparation, and then choose two supervised data mining techniques available in KNIME to predict certain data values and evaluate and compare their performance. You will need to select appropriate techniques, justify your choices made at different stages of your workflow, and demonstrate that you have knowledge of the necessary underlying data mining techniques.

You should write a 2,500 word structured report (see Section 3) that includes the following headings (more details on how the report will be assessed are provided below):

.     Introduction - introduce the prediction problem.

.     Data mining theory - provide a theoretical description of the two supervised data mining methods

used in the workflow (for example, the classification or regression techniques that have been used), why they are appropriate to the prediction task, and how their performance can be assessed. This should include citations to relevant prior literature.

.     Data exploration and preparation - describe the approaches used in the workflow to explore the data; and perform featureselection, transformation and normalisation, where appropriate.

.     Experimental setup - describe the experimental setup and the evaluation measures used in the

workflow and how the data has been handled to ensure that the models were not over-fitted. You should explain which nodes were used in KNIME and provide a rationale for the various parameter settings that were used. You should not, however, simply list all the modules in your workflow and their parameters - be selective and discuss the modules most critical to solving the data mining task.

.     Results - present the results for each data mining method and compare the performance of the different methods using graphical and tabular methods. What insights can you gain from the

models? For example, which are the most important features, are there any outliers in the predictions?

.     Conclusion and reflections - summarise the main findings of your report and reflect on the methods used.

Charts and tables (and their associated captions), references and appendices are not included in the word count.

Remember: your report should be a critical evaluation of the workflow in the context of the data mining problem posed, it should not be merely a description of what was done.

This assessment is worth 100% of the overall module mark for INF6028. A passmark of 50 is required to pass the module. Submission deadline: 1st of June at 4 PM, via Turnitin. See Section 4 for more general information about Coursework Submission Requirements within the Information School.

2. The Datasets

You will choose a single dataset to base your analyses and report on. Please choose one of the two datasets below and ensure before you start working on the assessment that you are using the correct dataset.

The datasets have been derived from Kaggle competitions and are downloadable from Blackboard in the Assessment section. A brief description of the attributes in each dataset is given at the end of this document.

Note that in both cases the data are different to the standard Kaggle datasets they have been extensively modified for this year’s run of INF6028. Do not attempt to use the datasets from Kaggle or to use/copy any of the workbooks available there this would constitute unfair means

Titanic Dataset (Binary Classification)

The data is split across two files, each of which contains 1,204 entries representing 1,204 passengers, although it should be noted that the passengers are not necessarily the same in the two files. The two files are titanic_ticket_data.csv and titanic_personal_data.csv

The aim of this challenge is to build a model that is able to predict whether or not a passenger will survive the sinking of the Titanic.

Song Popularity Dataset (Regression)

The data is split across two files, each of which contains 603 entries representing 603 popular songs from the Spotify platform. The two files are song_details.csv and song_acoustic_analysis.csv.

The aim of the challenge is to build a model to predict the popularity of each song on Spotify.

3. Report Structure

You are required to produce a structured report that includes all the sections detailed in Table 1. You must state the word count somewhere in the report. As there is a word count limit you should aim to make your writing as concise and informative as possible. The emphasis of the report should be on the clarity, accuracy and quality in communicating your findings. Where helpful, you may wish to state specifically which KNIME nodes you have used but you should avoid simply listing nodes used and their settings - be selective.

Table 1: Required content of the structured report.

Section

Description

Maximum allocated marks

Structured abstract

This should provide a summary of your report in a structured manner. This is not included in the word count.

Required, but 0 marks

Introduction

This section should introduce the data mining task that is addressed in the report. You should indicate the property/data value that is predicted and give a brief overview of the dataset and methods used.

10 marks

Data Mining Theory

This section should provide an overview of the

algorithms for predictive data mining used in

the workflow from a theoretical aspect. Explain why they are relevant to the prediction problem. Support your rationale by providing references   to the literature where the techniques have been applied to similar problems.

Include a short discussion of the most

appropriate methods for evaluating the

performance of these data mining methods.

25 marks

Data Exploration

and Preparation

This section should provide a brief description of

the data and of the approaches used to pre-

process the data. You should present an

investigation of the attributes (including the

data value to be predicted) and describe any data cleaning employed, including handling of missing data, data transformations and data aggregations.

10 marks

Experimental Setup

This section should describe the experimental design in the workflow.

You should describe the process followed in

order to find the best performing model for each method and how this was validated.

For example, which KNIME nodes were used?

How were they configured? Was any cross-

validation or a separate validation set used and why?

20 marks

Results and

Discussion

Present the results of the data mining process including the results of experiments to find the best model for each data mining method.

Compare the best performance of the different methods and, if appropriate, consider which

attribute contributes most to each model.

Discuss the advantages and disadvantages of the data mining methods. Which of the chosen methods produced the best model and why?

20 marks

Conclusion and

reflections

Summarise the main findings of the analysis and reflect on the choice of methods for the

problem,for example, how might the models be improved with hindsight? Use evidence from the literature to support your arguments.

15 marks

KNIME workflow

You should submit your KNIME workflow(s) as a .knwfor .knarfile. Note that this can consist of separate workflows but they should all be saved to one file. Include your best setup for each data mining method.

Required, but 0 marks.

Note that 5 marks   will be deducted if this is not submitted and it may make it difficult for your marker to assess your work.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图