代做International Financial Markets/International Finance (FIN 442/644), Winter 2024代写Web开发

Answer to Practice Midterm Exam

International Financial Markets/International Finance (FIN 442/644), Winter 2024

1.   Multiple Choice

Note: Explanations below for Q1 are unnecessary. They are provided for pedagogical purposes. Even if you provide one, it will not be graded and no partial credit will be given.

a)   CIBC quotes 1.42$/€ bid and 1.45$/€ ask. RBC quotes 1.41$/€ bid and 1.44$/€ ask. TD quotes 1.45$/€ bid and 1.47$/€ ask. What is the largest profit you can make if you start by buying €1 at CIBC?

a. ¢0    b. ¢1    c. ¢2     d. ¢3    e. ¢4     f. ¢5     g. ¢6    h. None of the above

Answer: a. If you start by buying €1 at $1.45 at CIBC, your best selling price is 1.45$/€ at TD. Thus, you make a ¢0 profit. To make a positive profit, you need to buy €1 at RBC.

b)  One Indian rupee (INR) is worth 0.9 Philippine pesos (PHP). One Brazilian real (BRL) is worth 25 Philippine pesos. What is BRL/INR?

a. 0.036           b. 0.040           c. 0.044            d. 1.11             e. 22.5

f. 25                g. 27.8             h. None of the above

Answer: a. SPHP/INR  = 0.9PHP/INR and SPHP/BRL  = 25PHP/BRL. So, SBRL/INR  = 0.9/25 = 0.036BRL/INR.

c)   In the Dozier Industries case, Rothschild, the CFO of Dozier, “was not entirely convinced [the pound] would continue to fall, or at least not as much as the forward rate indicated.” What is the parity condition he is implicitly evaluating?

a. Purchasing Power Parity

b. Relative Purchasing Power Parity

c. Interest Rate Parity

d. Forward Parity

e. Domestic Fisher Relation

f. International Fisher Relation

g. Real Interest Rate Parity

h. Uncovered Interest Rate Parity

i. Put-call Parity

Answer: d. He is comparing the forward rate and the expected future spot rate. This is the Forward Parity.

d)  The gold price in India rises 20% in rupee. The pound falls 15% against the rupee. What is the gold return in pound?

a. -35%            b. -29.2%        c. -5%              d. -2%              e. 2%

f. 5%               g. 29.2%          h. 35%             i. 41.2%          j. None of the above

Answer: i. The relative change in the gold price in India is Pt+1INR/PtINR 1 = 0.2.

The relative change in the pound value is St+1INR/₤/StINR/₤  – 1 = –0.15. Converting the INR price of gold to pounds and computing the return, we get (Pt+1INR/St+1INR/£)/(PtINR/StINR/£) – 1 = 1.2/0.85 – 1 = 0.412.

e)  You shorted a call option on one Polish zloty (PLN) with strike 3PLN/$. What is the dollar payoff of your position when the terminal spot rate is 2.8PLN/$?

g. –3                h. 1/3               i. –1/3              j. 0.2                k. –0.2             l. 5

m. –5               n. 1/2.8 – 1/3   o. 1/3 – 1/2.8   p. None of the above

Answer: o. Your counterparty will exercise the call option. You are forced to deliver one zloty at 3PLN/$ or 1/3$/PLN, when it is worth 1/2.8$/PLN in the spot market. Therefore, your dollar payoff is negative, 1/3 – 1/2.8 $/PLN.

2.   Short Questions

a)   Since the Real Interest Parity holds, so does the International Fisher Relation:

We will receive $1.0402 in one year.

b) Approximation and Decomposition. Compute the inflation rate differential and the relative change in the nominal ¥/$ exchange rate:

π¥ π$ = 0 – 0.03 = –0.03,

Δs¥/$ = 98/100 – 1 = –0.02.

So, the relative change in the real ¥/$ exchange rate is

Δx¥/$ ≈ Δs¥/$ – (π¥ π$) = –0.02 – (–0.03) = 0.01,

or 1%. Canada’s position has been hurt because

•   the 3% higher Canadian inflation rate outweighs:

•   the -2% stronger (2% weaker) dollar.

Exact formula. If you are asked to use the exact formula, compute

or 0.94%. This slightly differs from the approximation,  1%, because the  exact formula is multiplicative while the approximation formula is additive.

c)  Recall that the theoretical delta of the yen spot rate with respect to the yen futures is

S$/¥/∆F$/¥ = (1 + i¥)/(1 + i$),

which equals S$/¥/F$/¥ by the Interest Rate Parity, if the interest rates are constant over the range in which the small ∆ changes are taken (which is true in a partial- derivative sense: dS$/¥/dF$/¥  = (1 + i¥)/(1 + i$)). This is the theoretical hedge ratio. To hedge the ¥1 billion import obligation, we should buy the following number of the yen futures contract:

¥1 billion×(S$/¥/F$/¥)/¥12.5 million

= 1000×(F¥/$/S¥/$)/12.5 = 1000×(95/100)/12.5 = 76 contracts.

There is a maturity mismatch because the import payment is due in six months while the futures contract matures in nine months (there is basis risk; luckily there is no size mismatch).

Note: S and F in the first line above have the yen in the denominator of the superscript to represent the prices of the yen, while those in the second line bring the dollar to the denominator to fit the quotes. This is done by inverting the quote, S$/¥ = 1/S¥/$, and similarly for F.

3.   TexMesq

a)   0.80×(1 + 0.025/2)/(1 + 0.01/2) = $0.80597/CHF.

b)  In the forward hedge, the firm will sell CHF 10 per unit forward in 6 months at $0.80597/CHF.

c)   The firm should buy the put option with strike 0.75$/CHF. The future value of the premium is

FV(P) = 0.020×(1 + 0.025/2) = $0.02025.

(i) When the terminal spot rate is ST = 0.65$/CHF, the put option is in the money (ITM). The profit of the option is the payoff (K ST) less the future value of the  premium,

K ST FV(P) = 0.75 – 0.65 – 0.02025 = 0.07975$/CHF.

The profit of the hedged position adds the value of the export position, ST, to the above, which is equivalent to

K FV(P) = 0.75 – 0.02025 = 0.72975$/CHF.

(ii) When the terminal spot rate is ST = 0.95$/CHF, the put option is out of the   money (OTM). The profit of the option is the payoff (0) less the future value of the premium,

0 – FV(P) = 0 – 0.02025 = -0.02025$/CHF.

The profit of the hedged position adds the value of the export position, ST, to the above,

ST FV(P) = 0.95 – 0.02025 = 0.92975$/CHF.

d)  A zero-cost scheme for an exporter finances the purchase of the OTM put option from Part c) by shorting a call option. The range forward shorts an OTM call option, while the participating forward shorts a fraction of the ITM call option with the same strike price as the OTM put option.

(1) Range forward

Strategy: buy the 0.75 put and sell the 0.85 call, each on CHF10 per unit. Net receipt of premium = ¢2.4 (call) – ¢2.0 (put) = ¢0.4/CHF.

FV(net premium) = 0.004 × (1 + 0.025/2) = $0.00405.

(i) When the terminal spot rate is ST = 0.65$/CHF, the call option is out of the money (OTM), while the put option is in the money. Since you can sell the

franc at the put’s strike (KP), the profit of the hedged position is KP + FV(net premium) = 0.75 + 0.00405 = 0.75405$/CHF.

(ii) When the terminal spot rate is ST = 0.95$/CHF, the call option is in the money (ITM), while the put option is out of the money. Since you are obliged to sell the franc at the call’s strike (KC), or equivalently from the diagram below, the profit of the hedged position is

KC + FV(net premium) = 0.85 + 0.00405 = $0.85405/CHF.

(2) Participating forward

Strategy: for each 0.75 put bought, sell the 0.75 call on CHFy. Equate the premiums:

1 × ¢2.0 = y × ¢6.0

y = 2.0/6.0 = 0.33333

So, multiplying the CHF amount, buy the 0.75 put on CHF 10 per unit and sell the 0.75 call on CHF 3.3333 per unit.

Net receipt of premium = ¢6.0×y (call) – ¢2.0 (put) = ¢0/CHF. FV(net premium) = 0 × (1 + 0.025/2) = 0.

(i) When the terminal spot rate is ST = 0.65$/CHF, the call option is out of the money (OTM), while the put option is in the money. Since you can sell the franc

at the put’s strike (common K), the profit of the hedged position is K + FV(net premium) = 0.75 + 0 = 0.75$/CHF.

(ii) When the terminal spot rate is ST = 0.95$/CHF, the call option is in the money (ITM), while the put option is out of the money. From the diagram below, the profit of the hedged position is

K + (ST K)×(1 –y) = 0.75 + (0.95 – 0.75)×(1 –y) = 0.88333$/CHF.

(3) Synthetic forward (invalid)

Note: A synthetic forward is invalid because it does not provide an upside benefit as instructed. However, here is the strategy for review.

Strategy: buy the 0.75 put and sell the 0.75 call, each on CHF10 per unit. Net receipt of premium = ¢6.0 (call) – ¢2.0 (put) = ¢4.0/CHF.

FV(net premium) = 0.04 × (1 + 0.025/2) = 0.0405$/CHF.

Regardless of the terminal spot rate, the profit of the hedged position is 0.75 + 0.0405 = 0.7905$/CHF.

e)   Extra analysis for review: The firm’s manufacturing cost is $6.7 per unit. Its profit goal is $0.7 per unit. Compute the lowest possible profit after the manufacturing cost in dollars per unit for each of the hedging schemes in Parts b), c), and d). Does the scheme achieve the profit goal in any exchange-rate scenario?

Part b) The final dollar profit is

CHF 10×$0.80597/CHF – $6.7 = $1.3597 > $0.7/unit,

which achieves the profit goal.

Part c) The lowest possible profit is, from Case (i),

CHF 10×0.72975 – $6.7 = $0.5975 < $0.7/unit,

which does not achieve the profit goal.

Part d) (1) Range forward: The lowest possible profit is, from Case (i),

CHF 10×0.75405 – $6.7 = $0.8405 > $0.7/unit,

which achieves the profit goal.

Part d) (2) Participating forward: The lowest possible profit is, from Case (i),

CHF 10×0.75 – $6.7 = $0.8 > $0.7/unit,

which achieves the profit goal.

Part d), synthetic forward (invalid): Final profit is always

CHF 10×0.7905 – $6.7 = $1.205 > $0.7/unit,

which achieves the profit goal.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图