代做FIT5212 - Assignment 1代写留学生Python程序

FIT5212 - Assignment 1

Marks

Worth 50 marks, and 25% of all marks for the unit

Due Date

Due Week 7 – Lecture Date at 23:55pm

Extension

An extension could be granted under some circumstances. A special consideration application form. must be submitted. Please refer to the university webpage on special consideration.

Lateness

For all assessment items handed in after the official due date, and without an agreed extension, a 10% penalty applies to the student’s mark for each day after the due date (including weekends) for up to 10 days. Assessment items  handed in after 10 days without special consideration will not be considered.

Authorship

This is an individual assessment.  All work must be your own. All submissions will be placed through Turnitin. This makes plagiarism remarkably easy to identify for us.

Submission

Submission is 3 files:  one PDF discussion report, and one Jupyter notebook with a PDF print of it.  The three files must be submitted via Moodle. All files will go through Turnitin for plagiarism detection.

Programming

language

Python in Jupyter

Part 1:  Text Classification

The content has been gathered from the popular academic website arXiv.org for articles tagged as computer science content (though some of these are in mathematics or physics categories). This spans 2024-2016. You are given 3 csv files: train/dev/test sets. The fields in the csv files are:

. Title: the full title

. Abstract: the full abstract

. InformationTheory: a "1" if it is classified as an Information Theory article, otherwise "0".

. ComputerVision: a "1" if it is classified as a Computer Vision article, otherwise "0".

. ComputationalLinguistics: a "1" if it is classified as a Computational Linguistics article, otherwise "0".

The three classes are ComputationalLinguistics, InformationTheory and ComputerVision. These can occur in any combination, so an article could be all three at once, two, one or none. Your job is to build a text classifier that predicts the class ComputationalLinguistics using the Abstract field. Then repeat the same experiment using only the Titles. You should train different text classifiers using different configurations for this binary prediction task. The variations we would like to consider are:

1.   Task: 1 binary classification task (ComputationalLinguistics vs. Other two classes)

2.   Input: use Abstract, and Titles alone (separate configurations)

3.   Algorithm:  use 2 different algorithms from tutorials, use the RNN and then choose one of the statistical classifiers (logistic regressions, SVM, etc)

4.   Data size: train on the first 1000 cases in the training set, and then train on the full the training set.

5.   Pre-processing: Choose a data pre-processing procedure (i.e., lemmatization, stemming, removing stop words, etc) and stick with it in all your experiments.

So this makes 2 (i.e., abstract vs. title) by 2 (i.e., 2 algorithms) by 2 (i.e., 2 training sizes) different configurations.

For each configuration test the algorithm on the test set (Note: when testing for the model trained on the Abstracts, you should use only the Abstracts oftest set. Similarly for testing for the model trained on the Titles, you should use only the Titles oftest set.) provided and report the following results in your notebook

.    F1, precision, recall, accuracy

.    precision-recall curve

being creative about how you assemble the different values and plot the curves. The discussion of these results should be in its own 2 page discussion section in the PDF report. How well did the two algorithms work under different data size conditions, when and why?  How the model trained on title compared with the one trained on the abstracts? What insights do the various metrics and   plots give you?

Part 2:  Topic Modelling

The data used is the training data from Part 1.  Your job is to perform appropriate text pre-processing and preparation and then design two different variations for running LDA using the gensim.models.LdaModel()function call and pre-processing steps such as given in the tutorial. Select appropriate choice of pre-processing and parameters to develop model outputs that are informative. Choices you might make in differentiating the two variations are:

.    different pre-processing of text or vocabulary

.    use of bi-grams or not

.    different numbers of topics (e.g., K=10, K=40)

Now run these two on the first 1000 and the first 20,000 articles in the training data set. This means there are 2 by 2 different configurations for the LDA runs. Then make visualisations of some kind in the notebook. These should allow you to analyse and interpret the output of the topic models.

The actual discussion (analysis and interpretation) about the results should not appear in the notebook but be in the separate PDF discussion report. This is a 2 page discussion giving your analysis and findings that were presented in the notebook output. What sorts of topics do you see?

Are all top topic words comprehensible sets of words?  Perhaps find some articles that are exemplars and use them to illustrate key topics (but don't insert full articles in your report, not enough room, just extract a few lines or the title). Your analysis should serve three purposes:

1) to present what sorts of groupings there are about articles, and

2) to describe how the topic modelling presents this and any advantages or shortcomings of topic modelling for the role in 1), and

3) to explain how your two configurations and data set sizes (1000, 20000) compare.

This is a knowledge discovery task rather than a predictive task, so marks will be included for your ability to make novel findings from the topic models.

Submission by the due date

All Python code must be included in a single Jupyter notebook that must be submitted. This should have clear headings "Part 1: Text Classification" then followed by "Part 2:  Topic Modelling". It

should have the students name and ID embedded in the first comment (in markdown). The name of the file should be "code_012345678.ipynb" where "012345678" is replaced by your own student ID. An example/skeleton notebook file "code_012345678.ipynb" with appropriate headings is included with the datasets. To complete the submission, use the export option on the notebook system and export to PDF.  Save this as "code_012345678.pdf"

The notebook should:

.    be run on either Google Colab or your own Jupyter Notebook

.    have any special or unusual libraries indicated at the top of the file in commented out command form; they must be able to be installed from the standard Python repository,

。 e.g.,  "#  !pip3 install gensim"

.    assume the two datasets supplied exist in the current directory

.    have been run successfully to completion prior to submission, so the results are all embedded in the notebook

The PDF file matching the notebook should print the last version of the notebook submitted.

All discussion and analysis must be written up in a single separate PDF file.  This PDF report should have two discussion sections, "Part 1: Text Classification" and "Part 2:  Topic Modelling", each being two pages long. It is expected these will refer to plots and tables in the separate notebook. The name of the file must be "report_012345678.pdf" where "012345678" is replaced by your own student ID. The pages should be A4 size with standard margins and 11 point font.

Therefore, three files are to be submitted, "code_012345678.ipynb", "code_012345678.pdf" and "report_012345678.pdf" where "012345678" is replaced by your own student ID.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图